\(\frac{a}{b}=\frac{c}{d}\Rightarrow ad=bc=X\)
a/
\(\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\Leftrightarrow ab\left(c^2-d^2\right)=cd\left(a^2-b^2\right)\)\(\Leftrightarrow abc^2-abd^2=cda^2-cdb^2\Leftrightarrow a.c.X-b.d.X=a.c.X-b.d.X\)
Do đẳng thức cuối cùng đúng nên ta có \(\frac{ad}{bc}=\frac{a^2-b^2}{c^2-d^2}\) đúng
b/ \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}\)
Ta có: \(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}=\frac{a^2-b^2}{c^2-d^2}=\frac{ab}{cd}=\frac{2ab}{2cd}=\frac{a^2+b^2+2ab}{c^2+d^2+2cd}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\)