Đặt a/b=b/3c=c/9a=k
Ta có: a/b=b/3c=c/9a
=>(a/b)3=(b/3c)3=(c/9a)3=(a.b.c)/(b.3c.9c)=1/27=k3
=>k= (1/3)
Ta có: b/3c=1/3
=>b=c (đpcm)
Đặt a/b=b/3c=c/9a=k
Ta có: a/b=b/3c=c/9a
=>(a/b)3=(b/3c)3=(c/9a)3=(a.b.c)/(b.3c.9c)=1/27=k3
=>k= (1/3)
Ta có: b/3c=1/3
=>b=c (đpcm)
Cho \(\frac{a}{b}=\frac{b}{3c}=\frac{c}{9a}\)
Chứng minh rằng :b=c
Cho \(\frac{a}{b}=\frac{b}{3c}=\frac{c}{9a}\) với \(a,b,c\ne0\).Chứng minh rằng:\(b=c\)
(Nhìn tưởng dễ chứ khó đó )
Cho ba số a,b,c>0 thỏa mãn\(\frac{a+b-3c}{c}=\frac{b+c-3a}{a}=\frac{c+a-3b}{b}\)Chứng minh rằng a=b=c
Cho các số thực a,b,c,d khác 0 thỏa mãn \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}.\)Chứng minh rằng
\(\frac{a^3+2b^3+3c^3}{b^3+2c^3+3d^3}=\left(\frac{a+2b+3c}{b+2c+3d}\right)^3=\frac{a}{d}\)
Cho 3 số a;b;c > 0 thoả mãn: \(\frac{a+b-3c}{c}=\frac{b+c-3a}{a}=\frac{c+a-3b}{b}\)
chứng minh rằng a=b=c
Cho \(\frac{a}{b}=\frac{b}{3c}=\frac{c}{9a}\)CMR:b=c
Cho các số a,b,c,d thõa mãn điều kiện:\(\frac{a}{3b}=\frac{b}{3c}=\frac{c}{3d}=\frac{d}{3a}\)và a+b+c+d khác 0.Chứng minh rằng a=b=c=d
\(Cho\frac{a}{b}=\frac{c}{d}\)chứng minh rằng \(\frac{a}{b}=\frac{2a+3c}{2a-3c}\)
1.Cho \(\frac{a}{b}\)=\(\frac{c}{d}\)
Chứng minh rằng :
a) \(\frac{a}{3a+b}=\frac{c}{3c+d}\)