Help my
Cho \(\frac{a}{b}=\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2010}\)
Chứng minh a chia hết cho 2011
a)Tìm số tự nhiên a nhỏ nhất sao cho a chia cho 5 dư 4, chia cho 7 dư 5, chia cho 11
dư 6 ?
b) Chứng minh rằng \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{2011^2}+\frac{1}{2012^2}< 1\)
Câu 1:Thực hiện phép tính :
a.N=1-5-9+13+17-21+...+2001-2005-2009+2013+2017
b.So sánh A và B biết :
A=\(\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}\)
và B=\(\frac{2010+2011+2012}{2011+2012+2013}\)
Câu 2:
a.Cho a,b là các số nguyên thỏa mãn \(^{\left(a^{2+}b^2\right)}\)chia hết cho 3
Chứng minh rằng a và b cùng chia hết cho 3
b.Tìm 2 số nguyên tố x và y sao cho :\(x^2-6y^2=1\)
Cho Phân số \(\frac{a}{b}\)\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}\)Hãy chứng minh tử số \(a\)chia hết cho 7
Bài 1 :Thực hiện phép tính
a) N=1-5-9+13+17-21-25+......+2001-2005-2009+2013
b)So sánh P và Q
Biết P=\(\frac{2010}{2011}\)+\(\frac{2011}{2012}\)+\(\frac{2012}{2013}\)và Q=\(\frac{2010+2011+2012}{2011+2012+2013}\)
Bài 2:
TÍnh: N=\(\frac{5.\left(2^2.3^2\right)^9.\left(2^2\right)^6-2.\left(2^2.3\right)^{14}.3^6}{5.2^{28}.3^{19}-7.2^{29}.3^{18}}\)
Bài 3
Cho a,b là các số nguyên thỏa mãn(\(^{a^2+b^2}\))chia hết cho 3.Chứng minh rằng a và b chia hết cho 3
\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2010^2}+\frac{1}{2011^2}+\frac{1}{2012^2}\)
Chứng minh rằng A không phải là số tự nhiên
cho A=\(\frac{1}{2010}+\frac{2}{2009}+\frac{3}{2008}+...+\frac{2009}{2}+\frac{2010}{1}\)
B=\(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{2010}+\frac{1}{2011}\)
tính\(\frac{a}{b}\)
b.giả sử 2^2010 có m chữ số và 5^2010 có n chữ số.tính m+n
bài 1: Chứng tỏ rằng \(\left(2005^n+1\right)\left(2005^n+2\right)\)chia hết cho 3 với mọi n tự nhiên.
bài 2: Cho A=\(\frac{2011^{2011}+2}{2011^{2011}-1}\)và B=\(\frac{2011^{2011}}{2011^{2011}-3}\)
hãy so sánh A và B
a) Chứng minh rằng \(S=1+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{2001!}\)< 3
b) Chứng minh rằng nếu abc - deg chia hết cho 7 thì abcdeg cũng chia hết cho 7