Cho dãy tỉ số \(\frac{ab+bc}{a+b}=\frac{bc+ca}{b+c}=\frac{ca+ab}{c+a}\) (ab,bc,ca có gạhj ngang trên đầu). Chứng minh rằng a=b=c
CHO BIẾT \(\frac{\overline{ab}+\overline{bc}}{a+b}=\frac{\overline{bc}+\overline{ca}}{b+c}=\frac{\overline{ca}+\overline{ab}}{c+a}\)
CHỨNG MINH RẰNG \(a=b=c\)
cho a ,b ,c khác 0 và
\(\frac{ab+bc}{2}=\frac{bc+ca}{3}=\frac{ca+ab}{4}\) chứng minh \(\frac{a}{3}=\frac{b}{5}=\frac{c}{15}\)
Cho các số nguyên a,b,c khác 0 thoả mãn tổng \(\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}\)là các số nguyên. Chứng minh \(\frac{ab}{c},\frac{bc}{a},\frac{ca}{b}\)cũng là các số nguyên.
Cho \(\frac{a+\overline{bc}}{\overline{abc}}=\frac{b+\overline{ca}}{\overline{bca}}=\frac{c+\overline{ab}}{\overline{cab}}\)
Chứng minh \(\frac{\overline{bc}}{a}=\frac{\overline{ca}}{b}\frac{\overline{ab}}{c}\)
Cho a, b, c > 0 sao cho:\(\frac{ab+ac}{2}=\frac{bc+ab}{3}=\frac{ca+bc}{4}\)
Chứng minh rằng \(\frac{a}{3}=\frac{b}{5}=\frac{c}{15}\)
cho a,b,c và \(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\)
tính M= \(\frac{ab+bc+ca}{a^2+b^2+c^2}\)
cho biết \(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\) tính \(\frac{ab+bc+ca}{a^2+b^2+c^2}\)
Cho a, b, c khác 0 thỏa mãn : \(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\) . Tính M=\(\frac{ab+bc+ca}{a^2+b^2+c^2}\)