Cho a/b = c/d
Chứng minh rằng 2015a - 2016b / 2015a + 2016b = 2015c - 2016d / 2015c + 2016d
Cho \(\frac{a}{2b}=\frac{b}{2c}=\frac{c}{2d}=\frac{d}{2a},\left(a,b,c>0\right)\)
Tính giá trị biểu thức C=\(\frac{2017a-2016b}{c+d}+\frac{2017b-2016c}{a+d}+\frac{2017c-2016d}{a+b}+\frac{2017d-2016a}{b+c}\)
MỘT BÀI TOÁN HAY
cho dãy tỉ số bằng nhau
\(\frac{2016a+b+c+d}{a}=\frac{a+2016b+c+d}{b}=\frac{a+b+2016c+d}{c}=\frac{a+b+c+2016d}{d}\)
tính giá trị biểu thức\(M=\frac{a+b}{c+d}+\frac{b+c}{d+a}+\frac{c+d}{a+b}+\frac{d+a}{b+c}\)
cho ti le thuc \(\frac{a}{b}\)=\(\frac{c}{d}\).Chung minh: \(\frac{2015a-2016b}{2016a+2017b}\)=\(\frac{2015c-2016d}{2016c+2017d}\)
Cho \(\frac{a}{b}\)= \(\frac{c}{d}\). CMR:
a) \(\frac{2a+7b}{3a-4b}\)= \(\frac{2c+7d}{3c-4d}\)
b) \(\frac{2015a-2016b}{2016c+2017d}\)= \(\frac{2015c-2016d}{2016a+2017b}\)
Cho a/b=c/d.Chứng minh:2013a+2014b/2013c+2014d=2015a-2016b/2015c-2016d
cho 2016a+b+c+d/a=a+2016b+c+d/b=a+b+2016c+d/c=a+b+c+2016d/d tính M=a+b/c+d + c+d/d+a + c+d/a+b + d+a/b+c
Cho dãy tỉ số bằng nhau
\(\frac{2016a+b+c+d}{a}\)= \(\frac{a+2016b+c+d}{b}\)=\(\frac{a+b+2016c+d}{c}\)=\(\frac{a+b+c+2016d}{d}\)
Tính giá trị của biểu thức M=\(\frac{a+b}{c+d}\)+\(\frac{b+c}{d+a}\)+\(\frac{c+d}{a+b}\)+\(\frac{d+a}{b+c}\)
1) Cho \(\frac{a}{b}\)\(=\)\(\frac{c}{d}\)
CMR:
a) \(\left(\frac{a+b}{c+d}\right)^2\)\(=\)\(\frac{a^2+b^2}{c^2+d^2}\)
b) \(\frac{7a^2+5ac}{7a^2+5ac}=\frac{7b^2+5bd}{7b^2+5bd}\)
Sử Dụng Tính Chất Của Dãy Tỉ Số Bằng Nhau
2) Cho \(\frac{a}{2003}=\frac{b}{2004}=\frac{c}{2005}\)
CMR:
\(4\left(a-b\right)\left(b-c\right)=\left(c-d\right)^2\)
3) Cho \(\frac{a}{b}=\frac{c}{d}\)
CMR: \(\frac{2015a-2016b}{2016c+2017d}=\frac{2015c-2016d}{2016a+2017b}\)