§5. Dấu của tam thức bậc hai

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hanako-kun

Cho \(f\left(x\right)=x^2-2\left(m-2\right)x+m-2\)

a/ Tìm m sao cho \(f\left(x\right)\le0;\forall x\in\left(0;1\right)\)

b/ Tìm m sao cho \(f\left(x\right)>0;\forall x\in\left(0;1\right)\)

c/ Tìm m sao cho \(f\left(x\right)\le0;\forall x\in\left[0;1\right]\)

d/ Tìm m sao cho \(f\left(x\right)>0;\forall x\in[0;1]\)

e/ Tìm m sao cho \(f\left(x\right)\ge0;\forall x\in[0;1)\)

f/ Tìm m sao cho \(f\left(x\right)< 0;\forall x\in(0;1]\)

Giúp em mấy dạng này với ạ anh Nguyễn Việt Lâm, có gì anh minh hoạ hộ em bằng đồ thị với ạ :))

Nguyễn Việt Lâm
2 tháng 4 2020 lúc 20:48

\(a=1>0\) ; \(\Delta'=\left(m-2\right)^2-\left(m-2\right)=\left(m-2\right)\left(m-3\right)\)

a/ Để \(f\left(x\right)\le0\) \(\forall x\in\left(0;1\right)\)

\(\Leftrightarrow x_1\le0< 1\le x_2\)

\(\Leftrightarrow\left\{{}\begin{matrix}f\left(0\right)\le0\\f\left(1\right)\le0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m-2\le0\\1-\left(m-2\right)\le0\end{matrix}\right.\) \(\Rightarrow\) ko tồn tại m thỏa mãn

Do đó các câu c, f cũng không tồn tại m thỏa mãn

b/ TH1: \(\Delta< 0\Rightarrow2< m< 3\)

TH2: \(\left\{{}\begin{matrix}\Delta=0\\-\frac{b}{2a}\notin\left(0;1\right)\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m=2\\m=3\end{matrix}\right.\)

TH3: \(\left\{{}\begin{matrix}\Delta>0\\\left[{}\begin{matrix}0\le x_1< x_2\\x_1< x_2\le1\end{matrix}\right.\end{matrix}\right.\)

\(\Delta>0\Rightarrow\left[{}\begin{matrix}m>3\\m< 2\end{matrix}\right.\)

\(0\le x_1< x_2\Leftrightarrow\left\{{}\begin{matrix}f\left(0\right)\ge0\\\frac{x_1+x_2}{2}>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m-2\ge0\\m-2>0\end{matrix}\right.\) \(\Rightarrow m>2\) \(\Rightarrow m>3\)

\(x_1< x_2\le1\Leftrightarrow\left\{{}\begin{matrix}f\left(1\right)\ge0\\\frac{x_1+x_2}{2}< 1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}3-m\ge0\\m-2< 1\end{matrix}\right.\) \(\Rightarrow\) ko tồn tại m

Kết hợp 3 TH \(\Rightarrow m\ge2\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
2 tháng 4 2020 lúc 20:58

d/ Tương tự như câu b, nhưng

TH2: \(\left\{{}\begin{matrix}\Delta=0\\-\frac{b}{2a}\in\left[0;1\right]\end{matrix}\right.\) \(\Rightarrow\) không tồn tại m thỏa mãn

TH3: \(\left\{{}\begin{matrix}\Delta>0\\\left[{}\begin{matrix}0< x_1< x_2\\x_1< x_2< 1\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow m>3\)

Kết hợp 3 TH \(\Rightarrow\left[{}\begin{matrix}2< m< 3\\m>3\end{matrix}\right.\)

e/

TH1: \(\Delta\le0\Rightarrow2\le m\le3\)

TH2: \(\left\{{}\begin{matrix}\Delta>0\\\left[{}\begin{matrix}0\le x_1< x_2\\x_1< x_2\le1\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow m>3\)

\(\Rightarrow m\ge2\)

Khách vãng lai đã xóa

Các câu hỏi tương tự
lu nguyễn
Xem chi tiết
Hanako-kun
Xem chi tiết
YingJun
Xem chi tiết
Phạm Dương Ngọc Nhi
Xem chi tiết
Thanh Thúy Trần
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Cao Đỉnh
Xem chi tiết
Trần Thúy Uyên
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết