Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
The Icetaker

Cho \(f\left(x\right)=\frac{x^3}{1-3x+3x^2}.\) Tính \(A=f\left(\frac{1}{2020}\right)+f\left(\frac{2}{2020}\right)+...+f\left(\frac{2018}{2020}\right)+f\left(\frac{2019}{2020}\right).\)

Nguyễn Minh Đăng
21 tháng 10 2020 lúc 22:32

Xét \(f\left(x\right)+f\left(1-x\right)=\frac{x^3}{1-3x+3x^2}+\frac{\left(1-x\right)^3}{1-3\left(1-x\right)+3\left(1-x\right)^2}\)

\(=\frac{x^3}{1-3x+3x^2}+\frac{1-3x+3x^2-x^3}{1-3+3x+3-6x+3x^2}\)

\(=\frac{x^3}{1-3x+3x^2}+\frac{1-3x+3x^2-x^3}{1-3x+3x^2}\)

\(=\frac{1-3x+3x^2}{1-3x+3x^2}=1\)

Thay vào ta tính được:

\(A=\left[f\left(\frac{1}{2020}\right)+f\left(\frac{2019}{2020}\right)\right]+...+\left[f\left(\frac{1009}{2020}\right)+f\left(\frac{1011}{2020}\right)\right]+f\left(\frac{1010}{2020}\right)\)

\(A=1+...+1+f\left(\frac{1010}{2020}\right)\) (với 1009 số 1)

\(A=1009+f\left(\frac{1}{2}\right)=1009+\frac{\left(\frac{1}{2}\right)^3}{1-3\cdot\frac{1}{2}+3\cdot\left(\frac{1}{2}\right)^2}\)

\(A=1009+\frac{1}{2}=\frac{2019}{2}\)

Vậy \(A=\frac{2019}{2}\)

Khách vãng lai đã xóa
The Icetaker
21 tháng 10 2020 lúc 22:44

Tks bạn nhé

Khách vãng lai đã xóa
Nguyễn Huy Trí Thành
22 tháng 10 2020 lúc 16:22

hello ae xin chào

Khách vãng lai đã xóa

Các câu hỏi tương tự
The Icetaker
Xem chi tiết
Trịnh Anh Trang
Xem chi tiết
Nguyễn Ngọc Linh Nhi
Xem chi tiết
Huỳnh Ngọc Trâm
Xem chi tiết
Nguyễn Thị Bích Phương
Xem chi tiết
Hồ Quốc Khánh
Xem chi tiết
Thăng Vũ
Xem chi tiết
Forever_Alone
Xem chi tiết
doraemon
Xem chi tiết