+Tuấn 10B_2 (T ko biết đánh word nên dùng tạm .V)
GPT: \(\(\sqrt{x+3}+\sqrt[3]{x}=3\)\) (Bài này cách lp 9 dễ t ko giải nữa)
Vì \(\(f\left(x\right)=\sqrt{x+3}+\sqrt[3]{x}=3\)\) là hàm tăng trên tập [-3;\(\(+\infty\)\))
Ta có: Nếu \(\(x>1\Leftrightarrow f\left(x\right)>f\left(1\right)=3\)\)nên pt vô nghiệm
Nếu \(\(-3\le x< 1\Leftrightarrow f\left(x\right)< f\left(1\right)=3\)\)nên pt vô nghuêmj
Vậy x = 1
B2, GHPT: \(\(\hept{\begin{cases}2x^2+3=\left(4x^2-2yx^2\right)\sqrt{3-2y}+\frac{4x^2+1}{x}\\\sqrt{2-\sqrt{3-2y}}=\frac{\sqrt[3]{2x^2+x^3}+x+2}{2x+1}\end{cases}}\)\)
ĐK \(\(\hept{\begin{cases}-\frac{1}{2}\le y\le\frac{3}{2}\\x\ne0\\x\ne-\frac{1}{2}\end{cases}}\)\)
Xét pt (1) \(\(\Leftrightarrow2x^2+3-4x-\frac{1}{x}=x^2\left(4-2y\right)\sqrt{3-2y}\)\)
\(\(\Leftrightarrow-\frac{1}{x^3}+\frac{3}{x^2}-\frac{4}{x}+2=\left(4-2y\right)\sqrt{3-2y}\)\)
\(\(\Leftrightarrow\left(-\frac{1}{x}+1\right)^3+\left(-\frac{1}{x}+1\right)=\left(\sqrt{3-2y}\right)^3+\sqrt{3-2y}\)\)
Xét hàm số \(\(f\left(t\right)=t^3+t\)\)trên R có \(\(f'\left(t\right)=3t^2+1>0\forall t\in R\)\)
Suy ra f(t) đồng biến trên R . Nên \(\(f\left(-\frac{1}{x}+1\right)=f\left(\sqrt{3-2y}\right)\Leftrightarrow-\frac{1}{x}+1=\sqrt{3-2y}\)\)
Thay vào (2) \(\(\sqrt{2-\left(1-\frac{1}{x}\right)}=\frac{\sqrt[3]{2x^2+x^3}+x+2}{2x+1}\)\)
\(\(\Leftrightarrow\sqrt{\frac{1}{x}+1}=\frac{\sqrt[3]{x^2\left(x+2\right)}+x+2}{2x+1}\)\)
\(\(\Leftrightarrow\left(2x+1\right)\sqrt{\frac{1}{x}+1}=x+2+\sqrt[3]{x^2\left(x+2\right)}\)\)
\(\(\Leftrightarrow\left(2+\frac{1}{x}\right)\sqrt{1+\frac{1}{x}}=1+\frac{2}{x}+\sqrt[3]{1+\frac{2}{x}}\)\)
\(\(\Leftrightarrow f\left(\sqrt{1+\frac{1}{x}}\right)=f\left(\sqrt[3]{1+\frac{2}{x}}\right)\)\)
\(\(\Leftrightarrow\sqrt{1+\frac{1}{x}}=\sqrt[3]{1+\frac{2}{x}}\)\)
\(\(\Leftrightarrow\left(1+\frac{1}{x}\right)^3=\left(1+\frac{2}{x}\right)^2\)\)
Đặt \(\(\frac{1}{x}=a\)\)
\(\(\Rightarrow Pt:\left(a+1\right)^3=\left(2a+1\right)^2\)\)
Tự làm nốt , mai ra lớp t giảng lại cho ...
\(\)cho hàm \(f\left(x\right)=\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
a) Tìm điều kiện xác định của hàm
b) Tính \(f=\left(4-2\sqrt{3}\right)\)
và \(f\left(a^2\right)\)
c) Tìm x nguyên để f(x) là số nguyên
d) Tìm x sao cho f(x)=f(2x)
Tìm GTLN của biểu thức:
\(f\left(x\right)=\sqrt{2x^2+9x+9}+2\sqrt{x+4}-2x\)
Cho \(x\)=\(\sqrt{\frac{1}{2\left(\sqrt{3}-1\right)}-\frac{3}{2\left(\sqrt{3}+1\right)}}\)là nghiệm của đa thức \(F\left(x\right)\)=\(2x^2+2x-1\)
Tính M = \(4\left(x+1\right)^{16}-2^{15}+2x+1\)
ai làm được câu này mk cho ''MONEY''
Tìm GTLN:
\(f\left(x\right)=\sqrt{2x^2+9x+9}+2\sqrt{x+4}-2x\)
a) Cho \(x=\sqrt{\frac{1}{2\sqrt{3}-2}-\frac{3}{2\sqrt{3}+2}}\) .Tính GTBT: \(A=\frac{4\left(x+1\right)^{2017}-2x^{2016}+2x+1}{2x^2+3x}\)
b) Cho đa thức: \(f\left(x\right)=ãx^2+bx+c\).Biết f(x)>0 với mọi x thuộc R và a>0. Chứng minh rằng: \(\frac{5a-3b+2}{a-b+c}>1\)
\(F=\left(\frac{\sqrt{x}}{\sqrt{x}-2}-\frac{\sqrt{x}+1}{\sqrt{x}-2}-\frac{2\sqrt{x}+7}{x-4}\right):\left(\frac{3-\sqrt{x}}{\sqrt{x}-2}+1\right)\)
a,rút gọn
b,tính F biết x=9-\(4\sqrt{5}\)
c, tìm GTNN của F
a. \(\sqrt{\left(2x+3\right)^2}=x+1\)
b. \(\sqrt{\left(2x-1\right)^2}=x+1\)
c. \(\sqrt{x+3}=5\)
d. \(\sqrt{x+2}=\sqrt{7}\)
e. \(5\sqrt{x}=20\)
f. \(\sqrt{x+4}=7\)
g. \(\sqrt{\left(2x+1\right)^2}=3\)