Cho f(x) = ax2 + bx + c với a, b, c là các số hữu tỉ. CMR: \(f\left(-2\right).f\left(3\right)\le0\)
biết rằng 13a + b + 2c = 0
cho \(f\left(x\right)=ax^2+bx+c\) với a,b,c là các số hữu tỉ. Biết \(13a+b+2c=0\). Chứng tỏ rằng \(f\left(-2\right)\cdot f\left(3\right)\le0\)
cho \(f\left(x\right)=ax^2+bx+c\) với a,b,c là các số hữu tỉ
CMR: f(-2).f(3) nhỏ hơn hoặc bằng 0.Với 13a+b+2c =0
Cho đa thức \(f\left(x\right)=ax^2+bx+c\) với a,b,c là các số hữu tỉ không âm. Biết a+3c=2019 và a+2b=2020. Chứng minh rằng \(f\left(1\right)\le2019\frac{1}{2}\)
Cho \(f\left(x\right)=ax^2+bx+c\) (a ,b,c là các số thực )
a) Biết 10a+2b-5c=0 . Chứng minh\(f\left(-1\right).f\left(-4\right)\ge0\)
b) Biết 13a + b + 2c=0 . Chứng minh \(f\left(-2\right).f\left(3\right)\le0\)
Cho đa thức \(f\left(x\right)=ax^2+bx+c\) với a, b, c là các số hữu tỉ không âm, biết rằng a + 3c = 2019 và a + 2b = 2020. Chứng minh \(f\left(1\right)\le2019\frac{1}{2}\)
giúp mình với, ai nhanh vào đúng tick cho
Chứng minh rằng nếu các hệ số của đa thức:
\(f\left(x\right)=ax^2+bx+c\)
là những số nguyên lẻ thì đa thức \(f\left(x\right)\)không thể có nghiệm số hữu tỉ.
a) Cho \(f(x)=ax^2+bx+c \) với a, b, c là các số hữu tỉ.
Chứng minh rằng \(f\left(-2\right).f\left(3\right)\le0\).Biết rằng \(13a+b+2c=0\)
b) Tìm giá trị nguyên của x để biểu thức \(A=\frac{2}{6-x}\)có giá trị lớn nhất
Cho f(x) = ax^2 + bx + c có f(1) , f(4) , f(9) là các số hữu tỉ
CMR: KHi đó a,b,c là các số hữu tỉ