\(E=\frac{1}{1.101}+\frac{1}{2.102}+\frac{1}{3.103}+.........+\frac{1}{10.110}\)
\(F=\frac{1}{1.11}+\frac{1}{2.12}+\frac{1}{3.13}+.........+\frac{1}{100.110}\)
tính tỉ số \(\frac{E}{F}\)
Help me do my homework !
Cho \(E=\frac{1}{1.101}+\frac{1}{2.102}+\frac{1}{3.103}+....+\frac{1}{10.110}\) và \(\frac{1}{1.11}+\frac{1}{2.12}+\frac{1}{3.13}+.....+\frac{1}{100.110}\)
Tính tỉ số \(\frac{E}{F}\)
Cho \(E=\frac{1}{1.101}+\frac{1}{2.102}+...+\frac{1}{10.101}\)
\(F=\frac{1}{1.11}+\frac{1}{2.12}+...+\frac{1}{100.110}\)
Tính tỉ số \(\frac{E}{F}\) và \(\frac{F}{E}\)
cho E = \(\frac{1}{1.100}+\frac{1}{2.102}+\frac{1}{3.103}+...+\frac{1}{10.110}\)
F = \(\frac{1}{1.11}+\frac{1}{2.12}+\frac{1}{3.13}+...+\frac{1}{100.110}\)
Tính tỉ số \(\frac{E}{F}\)
Tìm x , bíÊt:
\(\frac{1}{1.101}+\frac{1}{2.102}+\frac{1}{3.103}+...+\frac{1}{10.110}x=\frac{1}{1.11}+\frac{1}{2.12}+\frac{1}{3.13}+...+\frac{1}{100.110}\)
Tìm x:
( \(\frac{1}{1.101}+\frac{1}{2.102}+\frac{1}{3.103}+...+\frac{1}{10.110}\) ) . x = \(\frac{1}{1.11}+\frac{1}{2.12}+...+\frac{1}{100.110}\)
Bài 1 : Tìm x biết : ( Giải rõ ràng => like )
\(\left(\frac{1}{1.101}+\frac{1}{2.102}+...+\frac{1}{10.110}\right)x=\frac{1}{1.11}+\frac{1}{2.12}+...+\frac{1}{100.110}\)
Tìm x , biết (\(\frac{1}{1.101}+\frac{1}{2.102}+...+\frac{1}{10.110}\)).x = \(\frac{1}{1.11}+\frac{1}{2.12}+...+\frac{1}{100.110}\)
Cho E=\(\frac{1}{1.101}\)+\(\frac{1}{2.102}\)+\(\frac{1}{3.103}\)+...+\(\frac{1}{10.110}\)va F=\(\frac{1}{1.11}\)+\(\frac{1}{2.12}\)+\(\frac{1}{3.13}\)+...+\(\frac{1}{100.110}\)
Tinh \(\frac{E}{F}\)