Cho đường tròn tâm O và điểm S ở ngoài đường tròn . Từ S kẻ hai tiếp tuyến SA và SD và cát tuyến SBC tới đường tròn ( B ở giữa S và C ).
a) Phân giác của góc BAC cắt dây cung BC ở M . Chứng minh SA = SM .
b) AM cắt đường tròn ở E. Gọi G là giao điểm của OE và BS; F là giao điểm của AD với BC . Chứng minh SA^2 = SG . SF .
c) Biết SB = a ; Tính SF khi BC = \(\dfrac{2a}{3}\)
Cho (O;R) và một điểm S nằm ngoài đường tròn. Từ điểm S kẻ hai tiếp tuyến SA, SB tới (O;R) (A và B là các tiếp điểm). Kẻ dây cung BC song song với SA; SC cắt (O;R) tại điểm thứ hai là D; tia BD cắt SA tại điểm M.
1, Chứng minh MA2 = MD.MB
2, Gọi I là trung điểm DC. Chứng minh 5 điểm S, B, I, O, A cùng thuộc một đường tròn và tia IS là phân giác góc BIA.
3, Qua điểm I kẻ đường thẳng song song với AC cắt AB tại E. Chứng minh ED//BC
4, Giả sử BM vuông góc SA, khi đó hãy tính bán kính đường tròn ngoại tiếp tam giác SDA theo R
Cho đường tròn (O;R) và dây CD cố định. Gọi H là trung điểm của CD. Gọi S là một điểm trên tia đối của tia DC. Qua S kẻ hai tiếp tuyến SA, SB tới đường tròn (O). Đường thẳng AB cắt SO, OH lần lượt tại E và F. Chứng minh FC là tiếp tuyến của đường tròn tâm O
Cho đường tròn (O; R) và một điểm S ở ngoài đường tròn (O; R). Từ điểm S kẻ hai tiếp tuyến SA, SB tới (O; R) (A và B là các tiếp điểm). Kẻ dây cung BC song song với SA; SC cắt đường tròn (O; R) tại điểm thứ hai là D; tia BD cắt SA tại điểm M.
1. Chứng minh MA2 = MD.MB
2. Gọi I là trung điểm đoạn DC. Chứng minh năm điểm S, B, I, O, A cùng thuộc một đường tròn và tia IS là phân giác của góc BIA.
3. Qua điểm I kẻ đường thẳng song song với AC cắt AB tại E. Chứng minh ED // BC
4. Giả sử BM \(\perp\) SA, khi đó hãy tính bán kính đường tròn ngoại tiếp DSDA theo R.
Cho đường tròn (O; R) và một điểm S ở ngoài đường tròn (O; R). Từ điểm S kẻ hai tiếp tuyến SA, SB tới (O; R) (A và B là các tiếp điểm). Kẻ dây cung BC song song với SA; SC cắt đường tròn (O; R) tại điểm thứ hai là D; tia BD cắt SA tại điểm M.
1. Chứng minh MA2 = MD.MB
2. Gọi I là trung điểm đoạn DC. Chứng minh năm điểm S, B, I, O, A cùng thuộc một đường tròn và tia IS là phân giác của góc BIA.
3. Qua điểm I kẻ đường thẳng song song với AC cắt AB tại E. Chứng minh ED // BC
4. Giả sử BM ^ SA, khi đó hãy tính bán kính đường tròn ngoại tiếp DSDA theo R.
Câu 1: Cho (O;R) và điểm A nằm ngoài đường tròn (O). Vẽ 2 tiếp tuyến AB, AC của (O) (B,C: tiếp điểm). Vẽ cát tuyến ADE của (O); D nằm giữa D & E; tia AD nằm giữa 2 tia AB và AO.
a) Gọi H là giao điểm của OA và BC. C/m: DEOH nội tiếp
b) Đường thẳng AO cắt (O) tại M và N (M nằm giữa A và O). C/m: EH.AD= MH.AN
Câu 2: Cho nửa đường tròn tâm (O;R) đường kính AB và điểm C trên đường tròn sao cho CA=CB. Gọi M là trung điểm của dây cung AC. Nối BM cắt cung AC tại E; AE và BC kéo dài cắt nhau tại D.
a) C/m: MOCD là hình bình hành
b) Vẽ đường tròn tâm E bán kính EA cắt (O) tại điểm thứ 2 là N. Kẻ EF vuông góc với AC, EF cắt AN tại I, cắt (O) tại điểm thứ 2 là K; EB cắt AN tại H. C/m: BHIK nội tiếp.
Câu 3: Cho (O;R). Từ điểm S nằm ngoài đường tròn sao cho SO=2R. Vẽ tiếp tuyến SA,SB (A,B là tiếp tuyến). Vẽ cát tuyến SDE (D nằm giữa S và E), điểm O nằm trong góc ESB. Từ O kẻ đường vuông góc với OA cắt SB tại M. Gọi I là giao điểm của OS và (O).
a) C/m: MI là tiếp tuyến của (O)
b) Qua D kẻ đường vuông góc với OB cắt AB tại H và EB tại K. C/m: H là trung điểm của DK.
Cho đường tròn O nằm ngoài đường tròn O từ S kẻ hai tiếp tuyến Sa và SB với đường tròn O A,B là các tiếp điểm Gọi D là giao điểm của AO với SB, E là giao điểm của AB với SO. Vẽ AD cắt đường tròn O tại C. Kẻ BH vuông góc AC a. Chứng minh tứ giác SAOB nội tiếp. b. Chứng ming BC song song SO và BC là phân giác của góc HBD. c. Gọi F là giao điểm của SC và BH. Chứng minh F là trung điểm của BH ( giải giúp mình câu c thoi ạ! Cảm mơn ạ!)
Cho đường tròn tâm O và điểm S ở ngoài đường tròn . Từ S kẻ hai tiếp
tuyến SA và SD và cát tuyến SBC tới đường tròn (B ở giữa S và C). Phân giác
của góc BAC cắt dây cung BC ở M. SO cắt AD tại H.
a) Chứng minh SO vuông góc với AD
b) Chứng minh SA = SM
c) AM cắt đường tròn ở E. Gọi G là giao điểm của OE và BC, F là giao điểm
của AD với BC .
Chứng minh SA2 = SG . SF
d) Biết SB = a ; Tính SF khi BC = 2a/3
Cho đường tròn tâm O và điểm S nằm bên ngoài đường tròn (O). từ S kẻ 2 tiếp tuyến SA,SB với đường tòn (O),(A,B là các tiếp điểm). gọi D là giao điểm của AO và SB, E là giao điểm của SO và AB. Vẽ AD cắt đường tròn (O) tại điểm thứ 2 là C.kẻ BH vuông góc AC
a/ chứng minh tứ giác SAOB là tứ giác nội tiếp
b/ chứng minh BC // SO và BC là phân giác của góc HBD
c/ gọi F là giao điểm của SC và BH. Chứng minh F là trung điểm của đoạn BH