Cho đường tròn tâm O và cát tuyến CAB. Từ điểm chính giữa E của cung lớn AB, kẻ đường kính EF cắt AB tại D. CE cắt (O) tại điểm thứ 2 là I. Các dây AB =FI cắt nhau tại K. Chứng minh
a, 4 điểm E, D, K, I cùng thuộc 1 đường tròn
b, CI.CE = CK.CD
c, IC là phân giác của góc ngoài tại đỉnh I của tam giác AIB
Cho đường tròn (O;R) và cát tuyến CAB. Từ điểm chính giữa E của cung lớn AB kẻ đường kính EF cắt AB tại D, CE cắt (O) tại điểm thứ hai là I. Các dây AB và FI cắt nhau tại K. CMR
1) Bốn điểm E,D,K,I cùng thuộc một đường tròn.
2) CI.CE=CK.CD
3) IC là tia phân giác góc ngoài tại đỉnh I của tam giác ABI
Câu 1: Cho (O;R) và điểm A nằm ngoài đường tròn (O). Vẽ 2 tiếp tuyến AB, AC của (O) (B,C: tiếp điểm). Vẽ cát tuyến ADE của (O); D nằm giữa D & E; tia AD nằm giữa 2 tia AB và AO.
a) Gọi H là giao điểm của OA và BC. C/m: DEOH nội tiếp
b) Đường thẳng AO cắt (O) tại M và N (M nằm giữa A và O). C/m: EH.AD= MH.AN
Câu 2: Cho nửa đường tròn tâm (O;R) đường kính AB và điểm C trên đường tròn sao cho CA=CB. Gọi M là trung điểm của dây cung AC. Nối BM cắt cung AC tại E; AE và BC kéo dài cắt nhau tại D.
a) C/m: MOCD là hình bình hành
b) Vẽ đường tròn tâm E bán kính EA cắt (O) tại điểm thứ 2 là N. Kẻ EF vuông góc với AC, EF cắt AN tại I, cắt (O) tại điểm thứ 2 là K; EB cắt AN tại H. C/m: BHIK nội tiếp.
Câu 3: Cho (O;R). Từ điểm S nằm ngoài đường tròn sao cho SO=2R. Vẽ tiếp tuyến SA,SB (A,B là tiếp tuyến). Vẽ cát tuyến SDE (D nằm giữa S và E), điểm O nằm trong góc ESB. Từ O kẻ đường vuông góc với OA cắt SB tại M. Gọi I là giao điểm của OS và (O).
a) C/m: MI là tiếp tuyến của (O)
b) Qua D kẻ đường vuông góc với OB cắt AB tại H và EB tại K. C/m: H là trung điểm của DK.
(4) cho △ABC (AB<AC). đường tròn tâm o đường kính BC cắt AB, AC lần lượt tại E và D. H là giao điểm của BD và CE.
a) c/m: AH⊥BC tại F
b) kẻ Hk⊥OA tại K. c/m: A, D, K, E cùng thuộc 1 đường tròn
c) tiếp tuyến tại B và D của (O) cắt nhau tại M. I là giao điểm của MD và AH. c/m: I là trung điểm AH
giúp mk vs ạ mai mk hc rồi
giups minh cau 1d, 2c , cam on nhieu
1. Cho tam giác ABC có ba góc nhọn. Đường tròn tâm (O) đường kính BC cắt hai cạnh Ab , AC lần lượt tại E và F. Gọi H là giao điểm của CE và BF, D là giao điểm của AD và BC.
a) Chứng minh AEHF nội tiếp
b) Chứng minh EC là tia phân giác của góc DEF
c) Đường thẳng EF cắt BC tại M, Chứng minh MB.MC=ME.MF=MO.MD
d) AD cắt đường tròn (O) tại I, chứng minh MI là tiếp tuyến của (O)
e) Đường thẳng qua D song song với MF, cắt AB và AC lần lượt tại K và L. Chứng minh : M, K, L, O cùng thuộc một đường tròn.
2. Từ một điểm A nằm ngoài đường tròn (O) kẻ hai tiếp tuyến AB và AC đến (O) (B và C là các tiếp điểm) và một cát tuyến ADE không đi qua tâm O (D nằm giữa A và E), gọi I là trung điểm của DE.
a) Chứng minh 5 điểm A;B;O;I;C cùng nằm trên một đường tròn suy ra IA là phân giác của góc BIC
b) BC cắt AE tại K. Chứng minh KA.KI=KD.KE
c) Qua C kẻ đường thẳng song với AB, đường này cắt các đướng thẳng BE, BD lần lượt tại P và Q. Chứng minh C là trung điểm của PQ.
d) Đường thẳng OI cắt đường tròn (O) tại S và H. Đường thẳng HK cắt (O) tại điểm thứ hai là T. Chứng minh 3 điểm A, T, S thẳng hàng
Cho đường tròn tâm O ,từ điểm A nằm ngoài đường tròn vẽ hai tiếp tuyến AB, AC và cát tuyến AMN , gọi E là trung điểm MN.Tia CE cắt (O) tại I. Tiếp tuyến tại M của (O) cắt AB, ÁC lần lượt tại H và K . Tìm vị trí của cát tuyến AMN để diện tích Tam giác AHK lớn nhất.
1. Cho tam giác ABC có ba góc nhọn. Đường tròn tâm (O) đường kính BC cắt hai cạnh Ab , AC lần lượt tại E và F. Gọi H là giao điểm của CE và BF, D là giao điểm của AD và BC.
a) Chứng minh AEHF nội tiếp
b) Chứng minh EC là tia phân giác của góc DEF
c) Đường thẳng EF cắt BC tại M, Chứng minh MB.MC=ME.MF=MO.MD
d) AD cắt đường tròn (O) tại I, chứng minh MI là tiếp tuyến của (O)
e) Đường thẳng qua D song song với MF, cắt AB và AC lần lượt tại K và L. Chứng minh : M, K, L, O cùng thuộc một đường tròn.
2. Cho điểm A nằm ngoài đường tròn (O;R), từ A kẻ hai tiếp tuyến AB, AC và cát tuyến ADE (B, C là hai tiếp điểm, O nằm trong góc BAE). BC cắt OA tại I
a) Chứng minh: tứ giác ABOC nội tiếp và OA vuông góc với BC
b) Chứng minh OI.IA=(BC^2)/4 và AB.AC = AD.AE
c) Vẽ đường kính BK của (O), Tia KD cắt OA tại F. Chứng minh FB vuông góc với EB
d) Gọi H là trung điểm của DE, từ B kẻ dây BN song song với DE. Chứng minh 3 điểm N, H, C thẳng hàng.
3. Từ một điểm A nằm ngoài đường tròn (O) kẻ hai tiếp tuyến AB và AC đến (O) (B và C là các tiếp điểm) và một cát tuyến ADE không đi qua tâm O (D nằm giữa A và E), gọi I là trung điểm của DE.
a) Chứng minh 5 điểm A;B;O;I;C cùng nằm trên một đường tròn suy ra IA là phân giác của góc BIC
b) BC cắt AE tại K. Chứng minh KA.KI=KD.KE
c) Qua C kẻ đường thẳng song với AB, đường này cắt các đướng thẳng BE, BD lần lượt tại P và Q. Chứng minh C là trung điểm của PQ.
d) Đường thẳng OI cắt đường tròn (O) tại S và H. Đường thẳng HK cắt (O) tại điểm thứ hai là T. Chứng minh 3 điểm A, T, S thẳng hàng
Giúp em giai cau 1 d, cau 2 c, câu 3 c , cảm ơn nhiều
Từ A nằm ngoài đường tròn tâm ( O) . Kẻ hai tiếp tuyến AB , AC đến đường tròn ( B , C là tiếp điểm ) . Kẻ cát tuyến ADE với ( O) ( D nằm giữa A và E ) CMR :
a ) 4 điểm A ; B ; O ;C cùng thuộc một đường tròn .
b) OA v góc với BC tại H
c) tam giác OHD đồng dạng ODA
d) BC trùng với tia phân giác DHE e) Từ D kẻ đt // BE . Đt này cắt AB ; BC lần lượt tại M và N . CMinh : D là trung điểm MN
Từ A nằm ngoài đường tròn tâm ( O) . Kẻ hai tiếp tuyến AB , AC đến đường tròn ( B , C là tiếp điểm ) . Kẻ cát tuyến ADE với ( O) ( D nằm giữa A và E ) CMR :
a ) 4 điểm A ; B ; O ;C cùng thuộc một đường tròn .
b) OA v góc với BC tại H
c) tam giác OHD đồng dạng ODA
d) BC trùng với tia phân giác DHE e) Từ D kẻ đt // BE . Đt này cắt AB ; BC lần lượt tại M và N . CMinh : D là trung điểm MN