Cho đường tròn tâm O. Từ điểm M nằm ngoài đường tròn kẻ các tiếp tuyến MA,MB với đường tròn( A,B các tiếp điểm) kẻ cát tuyến MCD không đi qua tâm O (C nằm giữa M và D ) a)C/M tứ giác MAOB nội tiếp b) C/M MA^2 =MC.MD c) Gọi H là giao điểm của AB và MO. CM tứ giác CHOD nội tiếp
Cho điểm M nằm ngoài đường tròn O,R . Vẽ tiếp tuyến MA, MB với đường tròn A,B là 2 tiếp điểm . Vẽ cát tuyến MCD không đi qua tâm O C nằm giữa M và D .a Chứng minh 5 điểm M,A,O,B,E cùng thuộc 1 đường tròn, xđ tâm I của đường tròn này
Cho đường tròn tâm O. Từ điểm M nằm ngoài đường tròn (O) vẽ cát tiếp tuyến từ M tới (O) tại A,B . Vẽ cát tuyến MCD không đi qua tâm O,C nằm giữa M và D
a) CM tứ giác MOAB nội tiếp trong một đường tròn
b) CM \(MA^2\)=MC.MD
Cho đường tròn tâm O và điểm M ngoài đường tròn đó . Từ M kẻ tiếp tuyến MA và cát tuyến MBC đến đường tròn ( B nằm giữa M và C ) . Phân giác của góc BAC cắt BC ở D , cắt đường tròn ở E . Chứng minh :
a) MD = MA
b) AD . AE = AC . AB
Cho đường tròn tâm O bán kính R và điểm M nằm ngoài đường tròn. Từ M vẽ hai tiếp tuyến MA, MB với đường tròn (A,B là hai tiếp tuyến) a) Chứng minh tứ giác MAOB là nội tiếp trong một đường tròn b) Vẽ cát tuyến MCD không đi qua tâm O (C nằm giữa M và D). Chứng minh hệ thức MA^2 = MC.MD c) Gọi H là trung điểm của dây CD. Chứng minh HM là tia phân giác của góc AHB giúp em với ạ em đang cần gấp
qua điểm m nằm ngoài đường tròn (O;R),kẻ tiếp tuyến MA,MB và cát tuyến MCD của đường tròn (O) (với A,B,C cùng thuộc đường tròn (O);điểm C nằm giữa 2 điểm M và D).Chứng minh ΔMBC∼ΔMDB.Từ đó suy ra MB2=MC.MD
Bài 1:Từ điểm M nằm ngoài đường tròn (O). Vẽ các tiếp tuyến AM,BM với đường tròn (A,B là các tiếp điểm) và cát tuyến MCD không đi qua tâm O (C nằm giữa M và D) với đường tròn(O).
a)C/m: Tứ giác MAOB nội tiếp
b)C/m: MA2=MC.MD
c)Đường thẳng MO cắt AB tại H và cắt (O) tại I và K( I nằm giữa M và K).C/m: CK là tia phân giác của góc DCH
Từ điểm M nằm ngoài đường tròn (O;R) kẻ tiếp tuyến MA (A là tiếp điểm) và cát tuyến MBC ko đi qua tâm O (điểm B nằm giữa 2 điểm M và C) gọi H là trung điểm của BC đường thẳng OH cắt (O;R) tại hai điểm N,K ( trong đó điểm K thuộc cung BAC. Gọi D là giao điểm của AN và BC).CM a) tứ giác AKHD là tứ giác nội tiếp b) góc NAB =góc NBD và NB^2 = NA ND
Cho đường tròn (O) và một điểm M ở bên ngoài đường tròn. Từ M kẻ tiếp tuyến MA và cát tuyến MBC với đường tròn. CMR: \(MA^2=MB.MC\)