Cho đường tròn tâm O, bán kính R. Điểm A thuộc đường tròn, BC là một đường kính (A khác B và C) . Vẽ AH vuông góc với BC tại H. Gọi E, M lần lượt là trung điểm của AB, AH và P là giao điểm của OE với tiếp tuyến tại A của (O ; R).
a) CMR: AB2 = BH.BC
b) CM: PB là tiếp tuyến của đường tròn (O)
c) CM: 3 điểm P, M, C thẳng hàng
d) Gọi Q là giao điểm của đường thẳng PA với tiếp tuyến tại C của đường tròn (O). Khi A thay đổi trên đường tròn (O), tìm giá trị nhỏ nhất của tổng OP + OQ
Cho đường tròn tâm O, bán kính R. Điểm A thuộc đường tròn, BC là một đường kính (A khác B và C) . Vẽ AH vuông góc với BC tại H. Gọi E, M lần lượt là trung điểm của AB, AH và P là giao điểm của OE với tiếp tuyến tại A của (O ; R).
a) CMR: AB2 = BH.BC
b) CM: PB là tiếp tuyến của đường tròn (O)
c) CM: 3 điểm P, M, C thẳng hàng
d) Gọi Q là giao điểm của đường thẳng PA với tiếp tuyến tại C của đường tròn (O). Khi A thay đổi trên đường tròn (O), tìm giá trị nhỏ nhất của tổng OP + OQ
Cho (O;R). Từ điểm P nằm ngoài đường tròn kẻ các tiếp tuyến PA, PB (A, B là 2 tiếp điểm) và kẻ đường kính AC của đường tròn
a) C/m PAOB nội tiếp
b) C/m PO // BC. Cho OP = 2R. Tính góc AOB và diện tích hình quạt tròn AOB (ứng với cung nhỏ AB)
Cho đường tròn tâm O, bán kính R và một điểm A sao cho OA=2R. VẼ các tiếp tuyến AB,AC ( B,C) là các tiếp điểm. Đường thẳng OA cắt BC tại H, cắt cung nhỏ BC và cung lớn BC lần lượt tại I,K
a/ CM OA vuông góc với BC, HI=OA=R bình phương
b/ CM tam gaics ABC đều, tứ giác ABKC là hình thoi
c/ CHứng tỏ I là tâm đường tròn nội tiếp tam giác ABC. Tính theo R bán kính của đường tròn này.
d/ Vẽ cát tueyens bất kì AMN của đường tròn tâm O. Gọi E là tủng điểm MN. CHứng tỏ 5 điểm O,E,A,B,C cùng thuộc một đường tròn
Cho đường tròn (O;R) đường kính AB. Trên tiếp tuyến tại A của (O;R) lấy điểm C sao cho AC = 2R. Gọi D là giao điểm của BC và đường tròn (O)
a) CM: AD là đường cao và cũng là đường trung tuyến của ΔABC
b) Vẽ dây cung AE vuông góc với OC tại H. CM:CE là tiếp tuyến của đường tròn (O;R)
c) Đường thẳng BE cắt đường thẳng OD tại F. Tính tanOBF và suy ra số độ của góc OFB
d) Gọi K là hình chiếu của điểm E xuống AB, M là giao điểm của EK với BC. Tính độ dài các đoạn thẳng ME và MK theo R
Cho nửa đường tròn (O), đường kính AB=2R. Lấy một điểm C trên nửa đường tròn sao cho góc ABC=30 độ. Gọi P là giao điểm của tiếp tuyến tại A với nửa đường tròn đường thẳng BC.
a) CM: tam giác ABC vuông và PA^2=PB.PC
b) Từ P vẽ tiếp tuyến thứ hai với đường tròn (O) tại M(M là tiếp điểm). CM: PO là đường trung trực của AM
C)PO cắt AM tại N. Tính PA , PO , AM theo R
d) Vẽ MH vuông góc AB tại H. Gọi I là giao điểm của PB và MH. Tính NI theo R
cho đường tròn tâm O bán kính R đường kính AB. Vẽ điểm C thuộc đường tròn tâm O bán kính R sao cho AC bằng R .kẻ OH vuông góc với AC tại H . qua điểm C vẽ một tiếp tuyến của đường tròn tâm O bán kính R tiếp tuyến này cắt đường thẳng OH tại D
Câu a/ chứng minh AD là tiếp tuyến của đường tròn tâm O bán kính R
Câu b/ tính BC theo R và tỉ số lượng giác của góc ABC
Cau c/ gọi M là điểm thuộc tia đối của tia CA . chứng minh MC nhân với MA bằng MO bình phương trừ AO bình phương
Cho đường tròn tâm O bán kính R và một điểm M sao cho OM=2R,từ M kẻ hai tiếp tuyến MA,MB của đường tròn tâm O bán kính R (A,B là tiếp điểm).
a)Chứng minh tam giác MAB đều,tính AM theo R
b)Qua điểm C thuộc ucng nhỏ AB vẽ tiếp tuyến với đường tròn tâm O bán kính R cắt MA tại E,cắt MB tại F,OF cắt AB tại K,OE cắt AB tại H.Chứng minh EK vuống góc với OF
c)Khi số đo cung BC=90 độ.Tính EF và diện tích tam giác OHK theo R
cho đường tròn tâm O bán kính r , điểm A nằm ngoài đường tròn tâm O . vẽ tiếp tuyến AB của đướng tròn tâm O , vẽ dây cung BC của đường tròn tâm O vuông góc với OA tại H
a, Cm H là trung điểmcủa BC
b, CM AC là tiếp tuyến của đường tròn tâm O
c, OA = 2r cm tam giác ABC đều
d, trên tia dối của tia BC lấy Q ,từ Q kẻ 2 tiếp tuyến QD và QE của đường tròn tâm O .CM AED thẳng hàng