Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Hằng

Cho đường tròn tâm O bán kính R. Một đường thẳng d không đi qua O và cắt đường tròn tại hai điểm phân biệt A và B. Trên d lấy điểm M sao cho A nằm giữa M và B. Từ M kẻ hai tiếp tuyến MC và MD với đường tròn (C, D là các tiếp điểm).

              1.Chứng minh rằng 4 điểm M,C,O,D cùng nằm trên một đường tròn.

              2. Gọi I là trung điểm của AB. Đường thẳng IO cắt tia MD tại K.

Chứng minh rằng KD. KM = KO. KI

 3. Một đường thẳng đi qua O và song song với CD cắt các tia MC và MD lần lượt tại E và F. Xác định vị trí của M trên d sao cho diện tích tam giác MEF đạt giá trị nhỏ nhất.

 

Chúng Thị Lan Anh
10 tháng 4 2020 lúc 20:51

1. MCOD nội tiếp đường tròn (+2 góc đối nhau =180o)

=> đpcm

2. OAI = OBI (c.g.c)

=> ^AOI = ^BOI

=> OI là phân giác cx là trung tuyến

=> OI là đường cao

=> ^OIA = 90o

=> ^OIM = 90o

OIDM nội tiếp (OIM =ODM = 90o)

=> KOD = KMI

.................=> tg KMI ~ tg KOD

=> đpcm....

Khách vãng lai đã xóa
Trần Ngọc Phương Vy 3B
14 tháng 4 2020 lúc 9:02

Im mồm 🤬🤬🤬

Khách vãng lai đã xóa
Bùi Công Trình
15 tháng 4 2020 lúc 16:15

1.Ta có: \(\widehat{MDO}+\widehat{MCO}=180^0\)

=> Tứ giác MDOC nội tiếp đường tròn đường kính MO 

=> 4 điểm M,D,O,C cùng thuộc 1 đường tròn (đpcm)

2.Vì I là trung điểm của dây cung AB và OI đi qua AB => OI  \(\perp\)AB (đường kính đi qua trung điểm của 1 dây thì vuông góc với dây ấy)

Xét \(\Delta MIK\)và \(\Delta ODK\)

\(\widehat{MIK}=\widehat{ODK}=90^0\)

\(\widehat{DOK}=\widehat{IMK}\)(Cùng phụ với \(\widehat{MKO}\))

=> \(\Delta MIK~\Delta ODK\left(g-g\right)\)

=> \(\frac{KI}{KD}=\frac{KM}{KO}\Rightarrow KI.KO=KM.KD\left(đpcm\right)\)

3. Gọi giao điểm của CD và OM là H

Ta có DM và MC là 2 tiếp tuyến cắt nhau tại M => OH là tia phân giác của \(\widehat{DOC}\)và MO là tia phân giác của \(\widehat{FME}\)(tính chất 2 tiếp tuyến cắt nhau)

\(\Delta ODC\)cân tại O (OD=OC) có OH là tia phân giác => OH cũng là đường cao của \(\Delta ODC\)

=>OH   \(\perp\)DC hay OM   \(\perp\)DC

Ta có: EF//CD và OM    \(\perp\)CD => OM   \(\perp\)EF

Xét \(\Delta MOF\)và \(\Delta MOE\)

\(\widehat{MOF}=\widehat{MOE}=90^0\)

MO là cạnh chung

\(\widehat{FMO}=\widehat{EMO}\)

=> \(\Delta MOF=\Delta MOE\left(cgv-gnk\right)\)

Mà \(S_{MOF}+S_{MOE}=S_{MEF}\)

\(\Rightarrow S_{MOE}=\frac{1}{2}S_{MEF}\)

\(S_{MEF}=2S_{MOE}=OC.ME=R.ME=R\left(MC+CE\right)\)

Ta có: \(ME=MC+CE\ge2\sqrt{MC.CE}=2\sqrt{OC^2}=2R\)(BĐT Cô-si)

\(\Rightarrow S_{MEF}=R.\left(MC+CE\right)\ge R.2R=2R^2\)

Dấu "=" xảy ra khi MC=CE=R => \(OM=R\sqrt{2}\)

Vậy M là giao điểm của \(\left(O,R\sqrt{2}\right)\)và đường thẳng d thì SMEF  đạt giá trị nhỏ nhất

Khách vãng lai đã xóa
Trần Ngọc Phương Vy 3B
7 tháng 5 2020 lúc 9:25

cam mom

Khách vãng lai đã xóa

Các câu hỏi tương tự
Nguyễn Phương Anh
Xem chi tiết
Hoa Nguyễn
Xem chi tiết
Until Yoy Đỗ
Xem chi tiết
❊ Linh ♁ Cute ღ
Xem chi tiết
Phạm Lê Minh Ngọc
Xem chi tiết
Lê Trần Ngọc Trâm
Xem chi tiết
Phạm Tiến Dũng
Xem chi tiết
Dũng 24
Xem chi tiết
hieu
Xem chi tiết