Cho đường tròn tâm O, bán kính R =6cm.Từ điểm M bên ngoài đường tròn (OM= 9cm) kẻ các tiếp tuyến MA,MB của (O) với A, B là các tiếp điểm.Gọi I là trung điểm của OA, MI cắt AB tại N.Tính độ dài MN.
cho đường tròn tâm O , bán kính R = 6cm . từ điểm M bên ngoài đường tròn (OM=9cm) kẻ các tiếp tuyến MA, MB của (O) với A,B là các tiếp điểm. Gọi I là trung điểm của OA, MI cắt AB tại N. Tính độ dài MN
Cho đường tròn (O; R). Điểm M ở bên ngoài đường tròn sao cho OM= 2R. Kẻ hai tiếp tuyến MA, MB tời đường tròn (A;B là các tiếp điểm). Nối OM cắt AB tại H. Hạ HD vuông góc MA tại D. Điểm C thuộc cung nhỏ AB. Tiếp tuyến tại C của đường tròn (O;R) cắt MA, MB lần lượt tại E và F. Đường tròn đường kính BM cắt BD tại I. Gọi K là trung điểm của OA. Chứng minh ba điểm M, I, K thẳng hàng
Cho đường tròn tâm O bán kính R . Tại điểm M nằm ngoài đường tròn kẻ các tiếp tuyến MA,MB với đường tròn ( A,B là các tiếp điểm ) . Vẽ đường thẳng MCD không đi qua tâm ( C nằm giữa M và D ) . OM cắt AB và (O) tại H , gọi I là trung điểm OM
a) CM 4 điểm M,A,O,B thuộc 1 đường tròn
b) CM: AB vuông góc với OM
Cho đường tròn (O;R) và điểm M ở ngoài đường tròn sao cho OM=8/5 R . Kẻ các tiếp tuyến MA, MB với đường tròn (O) (A, B là các tiếp điểm), đường thẳng AB cắt OM tại K.
a) Chứng minh K là trung điểm của AB.
b) Tính MA, AB, OK theo R.
c) Kẻ đường kính AN của đường tròn (O). Kẻ BH vuông góc với AN tại H. Chứng minh MB.BN = BH.MO .
d) Đường thẳng MO cắt đường tròn (O) tại C và D (C nằm giữa O và M). Gọi E là điểm đối xứng của C qua K. Chứng minh E là trực tâm của tam giác ABD.
Cho đường tròn (O;R) và một điểm A nằm bên ngoài đường tròn(O)sao cho OA=2R.Bẽ các tiếp tuyến AB,AC (B,C là các tiếp điểm).Kẻ đường kính BD của (O) tiếp tuyến tại D của (O) cắt BC tại E,AO cắt O tại I a.C/m tứ giác ABOC nội tiếp, định tâm và bán kính của đường tròn này b.C/m BC.BE+AI.AO=6R²
Cho đường tròn (O;R) và điểm M ở ngoài đường tròn sao cho OM=8/5 R . Kẻ các tiếp tuyến MA, MB với đường tròn (O) (A, B là các tiếp điểm), đường thẳng AB cắt OM tại K.
a) Chứng minh K là trung điểm của AB.
Cho đường tròn (O;R) và điểm M ở ngoài đường tròn sao cho OM=8/5 R . Kẻ các tiếp tuyến MA, MB với đường tròn (O) (A, B là các tiếp điểm), đường thẳng AB cắt OM tại K.
c) Kẻ đường kính AN của đường tròn (O). Kẻ BH vuông góc với AN tại H. Chứng minh MB.BN = BH.MO .
Cho đường tròn (O;R). Điểm M ở ngoài đường tròn sao cho OM = 2R. Kẻ hai tiếp tuyến MA, MB tới đường tròn (A, B là các tiếp điểm). Nối OM cắt AB tại H. Hạ HD ⊥ MA tại D. Đường tròn đường kính MB cắt BD tại I. K là trung điểm AO. Chứng minh: M,I,K thẳng hàng.