Cho đường tròn (O) . Từ một điểm A nằm ngoài đường tròn kẻ các tiếp tuyến AB và AC( B,C là các tiếp điểm). H là giao điểm của OA và BC.
a) Chứng minh AO vuông góc với BC tại H.
b) từ điểm B Vẽ đường kính BD của đường tròn tâm O. Đường thẳng AD cắt đường tròn tâm O tại E( E khác D)
Chứng minh AE.AD=AH.AO
c) qua O kẻ đường thẳng vuông góc với AD tại K cắt BC tại F. Chứng minh FD là tiếp tuyến của đường tròn tâm O
Cho đường tròn tâm O và cột điểm A nằm ngoài đường tròn tâm O . Từ A vẽ hai tiếp tuyến AB, AC của đường tròn tâm O (B và C là hai tiếp điểm) . Gọi H là giao điểm của OA và BC.
a)Chứng minh OA vuông góc với BC tại H
b) Từ B vẽ đường kính BD cua (O), đường thẳng AD cắt (O) tại E ( khác D)
Chứng minh: AE.AD=AH.AO
c) Qua O vẽ đường thẳng vuông góc với cạnh AD tại K và cắt đường BC tai F. Chứng minh FD là tiếp tuyến của đường tròn tâm O.
Cho đường tròn tâm O và một điểm A nằm ngoài đường tròn này. Từ A vẽ hai tiếp tuyến AB, AC của đường tròn (O) (B và C là hai tiếp điểm). Gọi H là giao điểm của OA và BC.
a. Chứng minh OA vuông góc với BC tại H.
b. Từ B vẽ đường kính BD của (O), đường thẳng AD cắt đường tròn(O) tại E (E khác D). Chứng minh: AE.AD = AC^2
c. Qua O vẽ đường thẳng vuông góc với cạnh AD tại K và cắt đường BC tại F. Chứng minh rằng FD là tiếp tuyến của đường tròn (O).
cho đường tròn tâm o đường kính AB, trên tia BA lấy điểm K ( A nằm giữa B và K). từ điểm K vẽ các tiếp tuyến KM,KN với đường tròn (M,N là các tiếp điểm), MN cắt AB tại I . Chứng Minh rằng AI.BK=BI.AK
cho nửa đường tròn tâm O, đường kính AB =2R. Lấy một điểm C trên nửa đường tròn sao cho AC = R . Gọi K giao điểm của tiếp tuyến tại A với nửa đường tròn và đường thẳng BC.
a )Chứng minh tam giác AKB tam giác ACB vuông và tính sin góc ABC số đo góc ABC .
b )Từ K vẽ tiếp tuyến thứ hai với nửa đường tròn tâm O tại M . OK cắt AM tại E. Chứng minh OK vuông góc với AM và KC.CB = OE.OK
C )đường vuông góc với AB vẽ từ O cắt BK tại I và cắt đường thẳng BM tại N. Chứng minh IN=IO
d )Vẽ MH vuông góc với AB tại H. Gọi F là giao điểm của BK và MH. Chứng minh EF//AB.
cho nửa đường tròn tâm O, đường kính AB =2R. Lấy một điểm C trên nửa đường tròn sao cho AC = R . Gọi K giao điểm của tiếp tuyến tại A với nửa đường tròn và đường thẳng BC.
a )Chứng minh tam giác AKB , tam giác ACB là tam giác vuông và tính sin góc ABC số đo góc ABC .
b )Từ K vẽ tiếp tuyến thứ hai với nửa đường tròn tâm O tại M . OK cắt AM tại E. Chứng minh OK vuông góc với AM và KC.CB = OE.OK
C )đường vuông góc với AB vẽ từ O cắt BK tại I và cắt đường thẳng BM tại N. Chứng minh IN=IO
d )Vẽ MH vuông góc với AB tại H. Gọi F là giao điểm của BK và MH. Chứng minh EF//AB.
cho đường tròn tâm O đường kính AB ,điểm m thuộc đọan AB,qua m vẽ đường thẳng d vuông góc với AB.Trên d lấy C sao cho C nằm ngoài đường tròn tâm O .Vẽ các tiếp tuyến CE CF với đường tròn tâm O.gọi h,k là giao điểm của CA,CB với đường tròn tâm O (H khác A,K khác B);I là giao điểm của AK và BH.
Chứng minh C M E F O thuộc 1 đường tròn
Chứng minh E F I thẳng hàng
Xác định vị trí điểm C để tâm đường tròn ngoại tiếp tam giác ABC nằm trên đường thẳng EF
cho đường tròn tâm O, đường kính AB và một điểm C di động trên AB. Vẽ các đường tròn tâm I đường kính AC và đường tròn tâm K đường kính BC. Tia Cx vuông góc với AB tại C, cắt (O) tại M. Đoạn thẳng MA cắt đường tròn (I) tại E và đoạn thẳng MB cắt đường tròn (K) tại F.
a) chứng minh tứ giác MECF là hcn và EF là tiếp tuyến chung của (I) và (K)
b) cho AB=4cm, xác định điểm C trên AB để diện tích tứ giác IEKF là lớn nhất
c) khi C khác O đường tròn ngoại tiếp hcn MECF cắt đường tròn (O) tại P ( khác M), đường thẳng PM cắt AB tại N. Chứng minh tam giác MPF đồng dạng với tam giác MBN.
d) chứng minh 3 điểm N,E,F thẳng hàng.
Cho đường tròn tâm O đường kính AB. Dây cung MN vuông góc với AB tại I( I nằm giữa A và O). Trên tia NM lấy điểm K nằm ngoài đường tròn ( M nằm giữa N và K), AK cắt đường tròn tại C, CB cắt MN tại D. Chứng minh rằng:
a/ Tứ giác ACDI nội tiếp đường tròn. Xác định đường kính và tâm của đường tròn đó.
b/ AB.DI = AC.BD
c/ AD cắt đường tròn tại E. Từ điểm C kẻ đường thẳng vuông góc với AE cắt EI tại F. Chứng minh ECF tam giác cân.