Cho đường tròn (O;R) và đường thẳng d không có điểm chung sao cho khoảng cách từ O đến d không quá 2R. Qua M trên d vẽ tiếp tuyến MA, MB tới (O) (A, B là tiếp điểm). gọi H là hình chiếu vuông góc của O trên d. dây AB cắt OH ở K và cắt OM tại I, tia OM cắt (O) tại E
a) c/m OM vuông góc AB và OI.OM=R^2
b) c/m OK.OH=OI.OM
c) tìm vị trí của M trên d để OAEB là hình thoi
a, Theo tính chất của hai tiếp tuyến cắt nhau thì MA = MB
mà OA = OB ⇒ OM là trung trực của AB
⇒ OM ⊥ AB (đpcm) ⇒ AI là đường cao của ΔOAM
ΔOAM vuông tại A có AI là đường cao, theo hệ thức lượng trong tam giác vuông, ta có:
\(OA^2=OI.OM\) hay \(OI.OM=R^2\)
b, Xét ΔOKI và ΔOMH có:
\(\widehat{O}\) chung
\(\widehat{OIK}=\widehat{OHM}\)
=> ΔOKI đồng dạng với ΔOMH
\(\Rightarrow\frac{OI}{OK}=\frac{OH}{OM}\)
=> OI.OM = OH.OK (đpcm)
c, Để OAEB là hình thoi thì AE = EB = R
<=> ΔOAE đều hay \(\widehat{AOM}=60^0\)
\(\Leftrightarrow OM=\frac{OA}{\cos60^0}=2.OA=2.R\)
Vậy M ∈ d sao cho OM = 2.R thì tứ giác OAEB là hình thoi.