Từ một điểm A nằm ngoài đường tròn (O;R) kẻ tiếp tuyến AB với (O) (B là tiếp điểm). Đường thẳng đi qua B vuông góc với OA tại H và cắt đường trong (O) tại C. Vẽ đường kính BD. Đường thẳng AO cắt đường tròn (O) tại 2 điểm M và N (M nằm giữa A và N). Chứng minh:
a) CD//OA
b) AC là tiếp tuyến của đường tròn (O)
c) Cho biết R = 15cm, BC = 24CM. Tính AB, OA
d) Gọi I là trung điểm của HN. Từ H kẻ đường vuông góc với BI cắt BM tại E. Chứng minh: M là trung điểm của BE.
Từ một điểm A nằm ngoài đường tròn (O,R) kẻ tiếp tuyến AB với (O) (B là tiếp điểm). Đường thẳng đi qua B vuông góc với OA tại H và cắt đường trong (O) tại C. Vẽ đường kính BD. Đường thẳng AO cắt đường tròn (O) tại 2 điểm M và N (M nằm giữa A và N). Chứng minh:
a)CD//OA
b) AC là tiếp tuyến của đường tròn (O)
c) Cho biết R = 15cm, BC = 24CM. Tính AB, OA
d) Gọi I là trung điểm của HN. Từ H kẻ đường vuông góc với BI cắt BM tại E. Chứng minh: M là trung điểm của BE.
Cho đường tròn (O; R). Điểm M ở bên ngoài đường tròn sao cho OM= 2R. Kẻ hai tiếp tuyến MA, MB tời đường tròn (A;B là các tiếp điểm). Nối OM cắt AB tại H. Hạ HD vuông góc MA tại D. Điểm C thuộc cung nhỏ AB. Tiếp tuyến tại C của đường tròn (O;R) cắt MA, MB lần lượt tại E và F. Đường tròn đường kính BM cắt BD tại I. Gọi K là trung điểm của OA. Chứng minh ba điểm M, I, K thẳng hàng
AB và AC là 2 tiếp tuyến của đường tròn (O) với B và C là 2 tiếp điểm. Vẽ CH vuông góc với AB tại H, CH cắt đường tròn tâm O tại E và cắt OA tại D.
A) chứng minh: CO=CD
B) gọi M là trung điểm của CE, BM cắt OH tại I. Chứng minh I là trung điểm của HO.
Cho đường tròn (O;R). Từ điểm A ở ngoài đường tròn kẻ các tiếp tuyến AB, AC của đường tròn đó(B,C là các tiếp điểm).Gọi H là giao điểm của OA và BC.Gọi E là hình chiếu của C lên đường kính BD của (O). AD cắt CE tại K Chứng minh K là trung điểm CE
Cho đường tròn tâm O và điểm A nằm bên ngoài đường tròn, từ A vẽ tiếp tuyến AB với đường tròn (B là tiếp điểm). Kẻ đường kính BC của đường tròn(O). AC cắt đường tròn (O) tại D (D khác C).
a) Chứng minh: BD ⊥ AC và AB2 = AD.AC
b) Từ C vẽ dây CE // OA; BE cắt OA tại H. Chứng minh H là trung điểm của BE và AE là tiếp tuyến của đường tròn (O)
c) Chứng minh góc OCH = góc OAC.
d) Tia OA cắt đường tròn (O) tại F. Chứng minh FA.CH = HF.CA
Cho đường tròn (O) . Từ một điểm A nằm ngoài đường tròn kẻ các tiếp tuyến AB và AC( B,C là các tiếp điểm). H là giao điểm của OA và BC.
a) Chứng minh AO vuông góc với BC tại H.
b) từ điểm B Vẽ đường kính BD của đường tròn tâm O. Đường thẳng AD cắt đường tròn tâm O tại E( E khác D)
Chứng minh AE.AD=AH.AO
c) qua O kẻ đường thẳng vuông góc với AD tại K cắt BC tại F. Chứng minh FD là tiếp tuyến của đường tròn tâm O
Cho đường tròn (O; R) đường kính BC. Điểm A ở bên ngoài đường tròn với OA = 2R. Vẽ hai tiếp tuyến AD, AE với đường tròn (O; R) trong đó D, E là các tiếp điểm.
1. Chứng minh tứ giác ADOE nội tiếp và xác định tâm I của đường tròn ngoại tiếp tứ giác ADOE.
2. Chứng minh rằng tam giác ADE đều.
3. Vẽ DH vuông góc với CE với H thuộc CE . Gọi P là trung điểm của DH, CP cắt đường tròn (O) tại
điểm Q khác điểm C, AQ cắt đường tròn (O) tại điểm M khác điểm Q. Chứng minh: AQ . AM = 3R^2
4. Chứng minh đường thẳng AO là tiếp tuyến của đường tròn ngoại tiếp tam giác ADQ.
Cho đường tròn (O:R) và 1 điểm A ở bên ngoài đường tròn. Qua A vẽ đường thẳng d vuông góc với OA, trên d điểm M khác A. Vẽ tiếp tuyến MC với đường tròn (C là tiếp điểm, C và M cùng thuộc nửa mặt phẳng bờ OA). AC cắt đường tròn (O) tại B, tiếp tuyến của đường tròn (O) tại B cắt MC tại E, cắt đường thẳng d tại D.
Chứng minh A là trung điểm của MD.