Cho đường tròn (O;R), và các tiếp tuyến AB,AC căt nhau tại A nằm ngoài đường tròn(B,C là các tiếp điểm).Gọi H là giao điểm của BC và OA
a)CM: OAvuông góc với BC và OH.OA=R^2
b)Kẻ đường kính BD của đường tròn (O) và đường thẳng CD vuông góc với BD (K thuộc BD).CM OA song song với CD và AC.CD=CK.AO
c)Gọi I là giao điểm của AD và CK. CM:tam giác BIK và tam giác CHK có diện tích bằng nhau.
a, Vì OB = OC ( =R )
AB = AC (tiếp tuyến)
=> OA là trung trực BC
=> OA vuông góc BC
Vì AB là tiếp tuyến (O)
\(\Rightarrow OB\perp AB\)
=> t/g OAB vuông tại B
Xét t/g OAB vuông tại B có BH là đường cao
=>\(OH.OA=OB^2=R^2\)(hệ thức lượng)
b,* Xét \(\Delta\)BCD có : OB = OC = OD (=R)
=> \(\Delta\)BCD vuông tại C
=> \(BC\perp CD\)
Mà \(BC\perp OA\)
=> CD // OA