Cho đường tròn (O;R). Từ điểm A nằm bên ngoài đường tròn kẻ các tiếp tuyến AC, AC với đường tròn (B và C là các tiếp điểm). Gọi H là trung điểm của BC
a. Chứng minh 3 điểm A,B,C,O thuộc 1 đường tròn
b. Chứng minh 3 điểm A,H,O thẳng hàng.Kẻ đường kính BD của đường tròn (O;R). Vẽ CK vuông góc với BD. Chứng minh \(AC.CD=CK.AO\)
c. Gọi giao điểm của AO với đường tròn tâm O là N. Chứng minh N là tâm đường tròn nội tiếp tam giác ABC
d.Khi A di động trên tia By cố định, gọi M là trực tâm của tam giác ABC. Chứng minh M di động trên 1 đường cố định
Cho đường tròn (O; R) đường kính AB và điểm C bất kỳ thuộc đường tròn (C khác A và B). Kẻ tiếp tuyến tại A của đường tròn, tiếp tuyến này cắt tia BC ở D. Đường thẳng tiếp xúc với đường tròn tại C cắt AD ở E.
1. Chứng minh bốn điểm A, E, C, O cùng thuộc một đường tròn.
2. Chứng minh BC.BD = 4R2 và OE song song với BD.
3. Đường thẳng kẻ qua O và vuông góc với BC tại N cắt tia EC ở F. Chứng minh BF là tiếp tuyến của đường tròn (O;R).
4. Gọi H là hình chiếu của C trên AB, M là giao của AC và OE. Chứng minh rằng khi điểm C di động trên đường tròn (O; R) và thỏa mãn yêu cầu đề bài thì đường tròn ngoại tiếp tam giác HMN luôn đi qua một điểm cố định.
Cho đường tròn (O;R) và một điểm A nằm ngoài đường tròn. Từ một điểm M di động trên đường thẳng d ⊥ OA tại A, vẽ các tiếp tuyến MB, MC với đường tròn (B, C là các tiếp điểm). Dây BC cắt OM, OA lần lượt tại H và K.
a) Chứng minh rằng △ 𝑂𝐻𝐾 ∽△OAM, từ đó suy ra OH. OK = R2 (không đổi).
b) Chứng minh rằng H di động trên một đường tròn cố định khi M di động trên d.
c) Cho biết OA = 2R, hãy xác định tỉ số diện tích hình tròn tâm (O) và diện tích hình tròn cố định mà H đi qua.
Cho đường tròn tâm O đường kính AB và điểm H cố định trên AB , Từ B vẽ tiếp tuyến xy và trên xy lấy K di động. Vẽ đường tròn (K , KH) cắt đường tròn O tại C và D . Chứng minh rằng đường thẳng CD luôn đi qua 1 điêm cố định
cho đường tròn tâm O, đường thẳng d cố định nằm ngoài đường tròn, M di động trên đường thẳng d, kẻ 2 tiếp tuyến MA và MB với đường tròn (O;R), OM cắt AB tại I.
a) chứng minh tích OI.OM không đổi
b) Tìm vị trí của M để tam giác MAB đều
c) Chứng minh rằng khi M di động trên d thì AB luôn đi qua một điểm cố định
Cho điểm A nằm ngoài đường tròn (O,R) với OA=R\(\sqrt{2}\)Đường tròn tâm I đường kính OA cắt đường tròn (O) ở B và C.
1) Chứng minh AB,AC là hai tiếp tuyến của đường tròn (O) và tính độ dài của AB, AC theo R
2) Tứ giác ABOC là hình gì? Vì sao?
3) Đường thẳng OA cắt đường tròn (O) ở D và E ( D nằm giữa A và O). Kẻ cát tuyến AMN của đường tròn (O). Chứng minh AD.AE=AM.AN= hằng số
4) Khi cát tuyến AMN quay quanh A thì trung điểm K của đoạn MN di động trên đường cố định nào? Hãy chứng minh điều ấy
5) Cát tuyến AMN cắt BC ở J. Chứng minh rằng O,K,J,I cùng nằm trên một đường tròn và AJ.AK=AB2
cho đường tròn (O;R) và đường thẳng d cố định không giao nhau. Từ điểm M thuộc (d) kẻ 2 tiếp tuyến MA và MB với đường tròn (O;R) (A,B là các tiếp điểm.
1. chứng minh rằng tâm đường tròn nội tiếp tam giác AMB thuộc đường tròn (O;R)
2, cho biết MA=R căn 3,tính diện tích hình phẳng giới hạn bởi hai tiếp tuyến MA,mB và cung nhỏ AB
3, chứng minh rằng M di động trên (d) thì AB luôn đi qua một điểm cố định
Cho đường tròn tâm O có đường kính AB R2 . Gọi M là điểm di động trên đường tròn O . Điểm M khác AB, ; dựng đường tròn tâm M tiếp xúc với AB tại H . Từ A và B kẻ hai tiếp tuyến AC và BD với đường tròn tâm M vừa dựng.
a) Chứng minh BM AM , lần lượt là các tia phân giác của các góc ABD và BAC .
b) Chứng minh ba điểm C M D , , nằm trên tiếp tuyến của đường tròn tâm O tại điểm M .
c) Chứng minh AC BD không đổi, từ đó tính tích AC BD. theo CD .
d) Giả sử ngoài AB, trên nửa đường tròn đường kính AB không chứa M có một điểm N cố định. gọi I là trung điểm của MN , kẻ IP vuông góc với MB . Khi M chuyển động thì P chuyển động trên đường cố định nào.
Cần giải câu d
Cho đường tròn (O; R) và đường thẳng d không đi qua O cắt đường tròn (O) tại hai điểm A và B. Từ một điểm M tùy ý trên đường thẳng d và ở ngoài đường tròn (O) vẽ hai tiếp tuyến MN và MP với đường tròn (O).
1. Chứng minh rằng MN2 = MP2 = MA.MB. (câu này mình làm rồi)
2. Dựng vị trí điểm M trên đường thẳng d sao cho tứ giác MNOP là hình vuông.
3. Chứng minh rằng tâm của đường tròn nội tiếp và tâm của đường tròn ngoại tiếp tam giác MNP lần lượt chạy trên hai đường cố định khi M di động trên đường thẳng d.