Cho đường tròn (O; R). Điểm M ở bên ngoài đường tròn sao cho OM= 2R. Kẻ hai tiếp tuyến MA, MB tời đường tròn (A;B là các tiếp điểm). Nối OM cắt AB tại H. Hạ HD vuông góc MA tại D. Điểm C thuộc cung nhỏ AB. Tiếp tuyến tại C của đường tròn (O;R) cắt MA, MB lần lượt tại E và F. Đường tròn đường kính BM cắt BD tại I. Gọi K là trung điểm của OA. Chứng minh ba điểm M, I, K thẳng hàng
Từ điểm M nằm ngoài đường tròn (O;R) kẻ các tiếp tuyến MA,MB của đường
tròn (O) (A và B là các tiếp điểm, OM > 2R). Gọi E là trung điểm của đoạn thẳng MB,
C là giao điểm của đường thẳng AE với đường tròn (O) và tia MC cắt đường tròn (O)
tại điểm thứ hai D.
a) Chứng minh: tử giác MAOB nội tiếp và gócMOB = gócADB;
b) Chứng minh: BF^2 = EC EA và AD ||MB.
c) Kẻ đường kính BI của đường tròn (O). Đường thẳng MI và đường thẳng AD
cắt nhau tại K . Chứng minh: KD = 3KA.
Từ 1 điểm M nằm ngoài đường tròn (O;R) sao cho OM=2R, vẽ hai tiếp tuyến MA và MB( A,B là tiếp điểm), gọi H là giao điểm OM và AB
Chứng minh AB^2 = 4MH.HO
Cho đường tròn (O) và điểm M nằm ngoài đường tròn(O,R) với OM>2R, từ M vẽ hai tiếp tuyến MA, MB của đường tròn (O) ( A và B là hai tiếp điểm), vẽ cát tuyến MEF của đường tròn (O) (E nằm giữa M và F). Gọi H là giao điểm của MO và AB.
a. Chứng minh tứ giác MAOB nội tiếp đường tròn, xác định tâm của đường tròn đó.
b.Chứng minh MA2 = ME.MF và MH.MO = ME.MF
c. lấy điểm P thuộc cung AB nhỏ. Vẽ tiếp tuyến P cắt MA, MB lần lượt tại K và D, vẽ OK, OD lần lượt cắt AB tại Q và N. Chứng minh KN, DQ, OP đồng quy .
Bài 1:
Cho (O;R), và một điểm M nằm ngoài đường tròn (O) sao cho OM = 2R. Từ M vẽ tiếp
tuyến MA của đường tròn (O) (A là tiếp điểm)
a) Tính độ dài AM theo R
b) Từ A kẻ dây cung AB vuông góc với OM tại H. Chứng minh MB là tiếp tuyến của
đường tròn (O)
(vẽ hình)
Từ một điểm M ở ngoài (O;R) sao cho OM=2R. Vẽ hai tiếp tuyến MA,MB (A,B là tiếp điểm) ,gọi H là giao điểm OM và AB.
a) Cm: OH vuông góc AB và tính HM theo R.
b) Cm: 4 điểm M,A,O,B thuộc 1 đường tròn, ác địch tâm I của đường tròn.
c) Tia OI cắt (O;R) tại C. Cm MC.IH=MI.HC
Cho đường tròn(O; R), điểm M nằm phía bên ngoài đường tròn sao cho OM = 2R. Từ điểm M kẻ các tiếp tuyến MB, MC với đường tròn (O) (B, C là các tiếp điểm). Gọi H là giao điểm của OM và BC. a) Chứng minh: OM ⊥ BC tại H. b) Kẻ đường kính BD, chứng minh: CD//OM c) Tính MH.MO theo R. Tính 𝐵𝑀𝐶 = ? d) MD cắt đường tròn (O) tại điểm thứ hai là E. Chứng minh: MH.MO = ME.MD
Cho đường tròn (O;R) và điểm M ở ngoài đường tròn sao cho OM=8/5 R . Kẻ các tiếp tuyến MA, MB với đường tròn (O) (A, B là các tiếp điểm), đường thẳng AB cắt OM tại K.
d) Đường thẳng MO cắt đường tròn (O) tại C và D (C nằm giữa O và M). Gọi E là điểm đối xứng của C qua K. Chứng minh E là trực tâm của tam giác ABD.
Cho đường tròn (O; R) và điểm M nằm ngoài đường tròn sao cho OM = 2R . Từ M vẽ hai tiếp tuyến MB và MA với đường tròn (A; B là hai tiếp điểm) . Lấy 1 điểm N tùy ý trên cung nhỏ AB. Gọi I , K , H lần lượt là hình chiếu vuông góc của n trên AB , AM , BM.
1. Tính diện tích tứ giác MAOB theo R
2. Chứng minh : góc NHI = góc NBA
3. Gọi E là giao điểm của AN và HI ,F là giao điểm của BN và IK. Chứng minh tứ giác IENF nội tiếp được trong đường tròn
4. Giả sử O, N , M thẳng hàng. Chứng minh 2R2 = NA2 + NB2