Cho đường tròn (O) và (O') cắt nhau tại A và B. Từ A kẻ lần lượt các tiếp tuyến với (O) và (O'), các tiếp tuyến này cát đường tròn (O) và (O') lần lượt tại D và C. Gọi I là trung điểm của OO'. Lấy K sao cho I la trung điểm của AK.
a) Chứng minh OO'//KB và KB ⊥ AB.
b) Chứng minh tứ giác OAO'K là hình bình hành.
c) Chứng minh ΔKAD và ΔKAC cân.
d) Lấy E đối xứng với A qua B. Chứng minh bốn điểm A, C, E, D cùng nằm trên một đường tròn.
Cho đường tròn (O) và (O') cắt nhau tại A và B . Từ A kẻ lần lượt các tiếp tuyến với (O) và (O') , các tiếp tuyến này cắt đường tròn (O) và (O') lần lượt tại D và C. Gọi I là trung điểm của OO' . Lấy K sao cho I là trung điểm của AK
a, Chứng minh OO' // KB và KB vuông góc với AB
b, Chứng minh tứ giác OAO'K là hình bình hành
c, chứng minh tam giác KAD và KAC cân
d, Lấy E đối xứng với A và B. Chứng minh bốn điểm A,C, E,D cùng nằm trên một đường tròn
Cho đường tròn (O;R) và một điểm A nằm ngoài đường tròn (O;R). Qua A lần lượt kẻ các tiếp tuyến AB, AC đến đường tròn (O;R) (B, C là các tiếp điểm). Lấy điểm D thuộc đường tròn (O;R) sao cho BD song song với AO, đường thẳng AD cắt đường tròn (O;R) tại điểm thứ hai là E. Gọi M là trung điểm của AC.
a. Chứng minh ME là tiếp tuyến của đường tròn (O;R).
b. Từ D kẻ tiếp tuyến với đường tròn (O;R), tiếp tuyến này cắt ME tại T. Gọi r1, r2, r3 lần lượt là bán kính các đường tròn nội tiếp của OME, OTE, OMT. Chứng minh khi A thay đổi thì r1 + r2 + r3 luôn không đổi.
Cho đường tròn tâm O ,từ điểm A nằm ngoài đường tròn vẽ hai tiếp tuyến AB, AC và cát tuyến AMN , gọi E là trung điểm MN.Tia CE cắt (O) tại I. Tiếp tuyến tại M của (O) cắt AB, ÁC lần lượt tại H và K . Tìm vị trí của cát tuyến AMN để diện tích Tam giác AHK lớn nhất.
giups minh cau 1d, 2c , cam on nhieu
1. Cho tam giác ABC có ba góc nhọn. Đường tròn tâm (O) đường kính BC cắt hai cạnh Ab , AC lần lượt tại E và F. Gọi H là giao điểm của CE và BF, D là giao điểm của AD và BC.
a) Chứng minh AEHF nội tiếp
b) Chứng minh EC là tia phân giác của góc DEF
c) Đường thẳng EF cắt BC tại M, Chứng minh MB.MC=ME.MF=MO.MD
d) AD cắt đường tròn (O) tại I, chứng minh MI là tiếp tuyến của (O)
e) Đường thẳng qua D song song với MF, cắt AB và AC lần lượt tại K và L. Chứng minh : M, K, L, O cùng thuộc một đường tròn.
2. Từ một điểm A nằm ngoài đường tròn (O) kẻ hai tiếp tuyến AB và AC đến (O) (B và C là các tiếp điểm) và một cát tuyến ADE không đi qua tâm O (D nằm giữa A và E), gọi I là trung điểm của DE.
a) Chứng minh 5 điểm A;B;O;I;C cùng nằm trên một đường tròn suy ra IA là phân giác của góc BIC
b) BC cắt AE tại K. Chứng minh KA.KI=KD.KE
c) Qua C kẻ đường thẳng song với AB, đường này cắt các đướng thẳng BE, BD lần lượt tại P và Q. Chứng minh C là trung điểm của PQ.
d) Đường thẳng OI cắt đường tròn (O) tại S và H. Đường thẳng HK cắt (O) tại điểm thứ hai là T. Chứng minh 3 điểm A, T, S thẳng hàng
Bài 1 : Cho 2 đường tròn ( O , R ) và ( O' , R ) cắt nhau ở A và B . Cát tuyến qua B vuông góc với AB cắt các đường tròn ( O ) và ( O' ) lần lượt tại C , D . Một cát tuyến bất kì qua B cắt ( O ) , ( O' ) lần lượt tại M , N , CM cắt DN tại P
a ) CM : AM = AN
b ) CM : Tứ giác AMPN và ACPD nội tiếp
c ) Gọi I là trung điểm MN . Chứng minh A , I , P thẳng hàng
d ) TÍnh diện tích phần chung của ( O ) , ( O' ) theo R , cho góc ACB = 45 độ
Cho đường tròn tâm (O), A là một điểm nằm ngoài đường tròn, từ A kẻ tiếp tuyến AM, AN với đường tròn. Cát tuyến từ A cắt đường tròn tại B và C ( B nằm giữa A và C) . Gọi I là trung điểm của BC.
a/ C/m A,M,I,O,N nằm trên một đường tròn.
b/ Một đường thẳng qua B song song với AM cắt MN và MC lần lượt tại E và F. C/m tứ giác BENI nối tiếp và E là trung điểm của BF.
Cho hai đường tròn tâm O bán bán kính R và tâm O' bán kính R' cắt nhau tại A và B. Từ điểm C trên tia đối của tia AB kẻ các tiếp tuyến CD, CE với đường tròn tâm O (D, E là các tiếp điểm và E nằm trong đường tròn tâm O'). AD và AE cắt đường trong tâm O' lần nữa lần lượt tại M và N. DE cắt MN tại I.
a) Chứng minh tứ giác MIBD nội tiếp.
b) Chứng minh I là trung điểm của MN.
Từ một điểm A nằm bên ngoài đường tròn (O) kẻ hai tiếp tuyến AB, AC với đường tròn (O) (B, C là tiếp điểm). Một đường thẳng (d) đi qua A cắt đường tròn (O) tại hai điểm D và E (d không đi qua tâm O, D nằm giữa A và E), gọi I là trung điểm của DE. BC cắt AE tại S. Qua C kẻ đường thẳng song song với AB, đường thẳng này cắt các đường thẳng BE, BD lần lượt tại M và N. CM: C là trung điểm MN.