cho đường tròn (O) và điểm M nằm ngoài đường tròn (O). Từ điểm M kẻ tiếp tuyến MA, MC(A<C là các tiếp điểm). Từ M kẻ đường thẳng bất kì không đi qua O cát đường tròn tại B và D( B nằm giữa M và D). H là giao điểm của OM và AC. Từ C kẻ đường thẳng Song song với BD cắt (O) tại E( E#C) K là giao điểm cảu AE và BD. Chứng minh:
a, tứ giác OAMC nội tiếp
b, K là trung điểm của BD
c, AC là phân giác của góc BHD
CÔ HOÀNG THỊ THU HUYỀN GIÚP EM VỚI
1. Cho (O) và (O') cắt nhau tại 2 điểm A và B. Trên tia đối tia AB lấy điểm M khác điểm A. Qua M vẽ các tiếp tuyến MC, MD với (O') (C, D là tiếp điểm và C nằm ngoài (O). Đường thẳng AC cắt (O) tại P (khác A), AD cắt (O) tại Q (khác A). CD cắt PQ tại K
a) Chứng minh ΔBCDđồng dạng với ΔBPQ
b) Chứng minh đường tròn ngoại tiếp tam giác KPC luôn đi qua một điểm cố định khi M thay đổi
c) Chứng minh OK vuông góc với PQ
2. cho đường tròn (O) và điểm A nằm ngoài đường tròn. Từ A kẻ các tiếp tuyến AB, AC(B, C là tiếp điểm). Qua B kẻ đường thẳng song song với AC cắt (O) tại E. AE cắt (O) tại D, BD cắt AC tại M. CHứng minh M là trung điểm của AC
1. Cho (O) và (O') cắt nhau tại 2 điểm A và B. Trên tia đối tia AB lấy điểm M khác điểm A. Qua M vẽ các tiếp tuyến MC, MD với (O') (C, D là tiếp điểm và C nằm ngoài (O). Đường thẳng AC cắt (O) tại P (khác A), AD cắt (O) tại Q (khác A). CD cắt PQ tại K
a) Chứng minh ΔBCDđồng dạng với ΔBPQ
b) Chứng minh đường tròn ngoại tiếp tam giác KPC luôn đi qua một điểm cố định khi M thay đổi
c) Chứng minh OK vuông góc với PQ
2. cho đường tròn (O) và điểm A nằm ngoài đường tròn. Từ A kẻ các tiếp tuyến AB, AC(B, C là tiếp điểm). Qua B kẻ đường thẳng song song với AC cắt (O) tại E. AE cắt (O) tại D, BD cắt AC tại M. CHứng minh M là trung điểm của AC
Từ một điểm A nằm bên ngoài đường tròn (O) kẻ hai tiếp tuyến AB, AC với đường tròn (O) (B, C là tiếp điểm). Một đường thẳng (d) đi qua A cắt đường tròn (O) tại hai điểm D và E (d không đi qua tâm O, D nằm giữa A và E), gọi I là trung điểm của DE. BC cắt AE tại S. Qua C kẻ đường thẳng song song với AB, đường thẳng này cắt các đường thẳng BE, BD lần lượt tại M và N. CM: C là trung điểm MN.
Cho (O;R) và điểm A nằm ngoài đường tròn với OA > 2R. Từ A và B vẽ 2 tiếp tuyến AB, AC của đường tròn O (B,C là các tiếp điểm). VẼ dây BE của đường tròn O song song với AC; AE cắt (O) tại D khác E; BD cắt AC tại S. Gọi M là trung điểm của DE. Hai đường thẳng DE và BC cắt nhau tại V; đường thẳng SV cắt BE tại H. Chứng minh 3 điểm H,O,C thẳng hàng.
Member nào giú em với, cần gấp lắm sáng mai đi học rùi. 1 trong 2 bài đều được
AI LÀM ĐƯỢC MỖI NGÀY EM TICK 3 TICK
1. Cho (O) và (O') cắt nhau tại 2 điểm A và B. Trên tia đối tia AB lấy điểm M khác điểm A. Qua M vẽ các tiếp tuyến MC, MD với (O') (C, D là tiếp điểm và C nằm ngoài (O). Đường thẳng AC cắt (O) tại P (khác A), AD cắt (O) tại Q (khác A). CD cắt PQ tại K
a) Chứng minh ΔBCDđồng dạng với ΔBPQ
b) Chứng minh đường tròn ngoại tiếp tam giác KPC luôn đi qua một điểm cố định khi M thay đổi
c) Chứng minh OK vuông góc với PQ
2. cho đường tròn (O) và điểm A nằm ngoài đường tròn. Từ A kẻ các tiếp tuyến AB, AC(B, C là tiếp điểm). Qua B kẻ đường thẳng song song với AC cắt (O) tại E. AE cắt (O) tại D, BD cắt AC tại M. CHứng minh M là trung điểm của AC
Từ một điểm A nằm bên ngoài đường tròn (O) kẻ hai tiếp tuyến AB, AC với đường tròn (O) (B, C là tiếp điểm). Một đường thẳng (d) đi qua A cắt đường tròn (O) tại hai điểm D và E (d không đi qua tâm O, D nằm giữa A và E), gọi I là trung điểm của DE. BC cắt AE tại S. Qua C kẻ đường thẳng song song với AB, đường thẳng này cắt các đường thẳng BE, BD lần lượt tại M và N. CM: C là trung điểm MN.
Giúp mình bài này với.
từ điểm A nằm ngoài đường tròn (O). kẻ hai tiếp tuyến AB và AC( B,C là hai tiếp điểm). kẻ dây cung BD song song AC( tia AD nằm giữa hai dây AB và AO). đường thẳng AD cắt đường tròn O tại E và BC tại I. Tia BE cắt AC tại K.
a) CMinh: AB^2=AD. AE
b) chứng minh : K là trung điểm của AC
c) kẻ đường kính CS của đường tròn (O) và SE cắt BC ở M. chứng minh: MB.CI= MI.CB
cả nhà giải giúp e câu B và câu C với a. tks mọi người
Cho O R; và điểm A nằm ngoài đường tròn với OA R 2 . Từ A vẽ hai tiếp tuyến AB AC , của đường tròn O (B C, là tiếp điểm). Vẽ dây BE của đường tròn O song song với AC ; AE cắt O tại D khác E ; BD cắt AC tại S . Gọi M là trung điểm của đoạn DE . a) Chứng minh năm điểm A B C O M , , , , cùng thuộc một đường tròn. Xác định tâm và bán kính của đường tròn này. b) Chứng minh 2 SC SB SD . . c) Hai đường thẳng DE và BC cắt nhau tại Q ; đường thẳng SQ cắt BE tại H . Chứng minh ba điểm H O C , , thẳng hàng.