ai đó làm dùng cái tôi cũng đang cần bài này :((
ai đó làm dùng cái tôi cũng đang cần bài này :((
Cho đường tròn O điểm A nằm ngoài đường tròn vẽ tiếp tuyến AB AC vẽ đt đi wa C song song vs AB ,AD cắt (O) ở M ,CM cắt AB tại N. Chứng minh rằng:
a) góc BAD= góc ANC
b)AN.AN=NM.NC
c)AN=BN
Từ một điểm A ở bên ngoài đường tròn tâm O, kẻ hai tiếp tuyến AB và AC với đường tròn tâm O (B và C là hai tiếp điểm). Vẽ BD song song với AC ( D thuộc đường tròn tâm O), AD cắt đường tròn O tại K. Tia BK cắt AC tại I. CMR: I là trung điểm của AC
Từ một điểm A nằm bên ngoài đường tròn (O) kẻ hai tiếp tuyến AB, AC với đường tròn (O) (B, C là tiếp điểm). Một đường thẳng (d) đi qua A cắt đường tròn (O) tại hai điểm D và E (d không đi qua tâm O, D nằm giữa A và E), gọi I là trung điểm của DE. BC cắt AE tại S. Qua C kẻ đường thẳng song song với AB, đường thẳng này cắt các đường thẳng BE, BD lần lượt tại M và N. CM: C là trung điểm MN.
Cho đường tròn (O; R) đường kính AB và điểm M bất kì thuộc đường tròn (M khác A và B). Kẻ tiếp tuyến tại A của đường tròn, tiếp tuyến này cắt tia BM ở N. Tiếp tuyến của đường tròn tại M cắt AN ở D.
a.Chứng minh 4 điểm A, D, M, O cùng thuộc một đường tròn
b. Chứng minh OD song song với BM và suy ra D là trung điểm của AN
c. Đường thẳng kẻ qua O và vuông góc với BM cắt tia DM ở E. Chứng minh BE là tiếp tuyến của đường tròn (O; R)
d) Qua O kẻ đường thẳng vuông góc với AB và cắt đường thẳng BM tại I. Gọi giao điểm của AI và BD là J. Khi điểm M di động trên đường tròn (O; R) thì J chạy trên đường nào?
Cho đường tròn (O;R). Từ điểm A ngoài đường tròn kẻ các tiếp tuyến AB,AC với đường tròn (B,C là tiếp điểm). Gọi H là giao điểm của AO và BC
a) Cm: AO vuông góc với BC tại H
b) Vẽ đường kính BD của (O), cm: DC song song AO
c) AD cắt (O) tại E (E khác D). CM AE.AD=AH.AO
d) Qua vẽ đường thẳng vuông góc với AB. Đường thẳng này cắt OC tại F. CM: OA^2 = 2OC.OF
Cho đường tròn tâm O đường kính AB. Trên đường tròn lấy điểm C sao cho AC < BC ( C ≠ A). Các tiếp tuyến tại B và C của (O) cắt nhau ở điểm D,AD cắt (O) tại E ( E ≠ A)
a) Chứng minh góc BCE = góc DBE
b) Chứng minh bốn điểm O,B,D,C cùng thuộc một đường tròn
c) Qua C kẻ đường thẳng song song với BD cắt AB tại H. Gọi I là giao điểm của AD và CH. Chứng minh I là trung điểm của CH
Từ điểm A nằm ngoài đường tròn (O) , kẻ 2 tiếp tuyến AB , AC đến đường tròn (O) (B, C là 2 tiếp điểm )
a) cm 4 điểm O,B,A,C cùng thuộc một đường tròn và BC vuông góc với OA tại H
b) kẻ đường kính CD của đường tròn (O) . CM : BD//OA
c) Gọi E là trung điểm của BD , EH cắt OB tại M , đường thẳng qua E song song với AB cắt AD tại N . Các đường thẳng vuông góc với EM tại M và vuông góc với EM tại N cắt nhau tại I .Chứng minh : IO = IA
Vẽ hình dùm tớ nhé !!!! THANKS CÁC CẬU NHIỀU LẮM !!!!! <3
Cho đường tròn (O; R) đường kính AB và điểm C bất kỳ thuộc đường tròn (C khác A và B). Kẻ tiếp tuyến tại A của đường tròn, tiếp tuyến này cắt tia BC ở D. Đường thẳng tiếp xúc với đường tròn tại C cắt AD ở E.
1. Chứng minh bốn điểm A, E, C, O cùng thuộc một đường tròn.
2. Chứng minh BC.BD = 4R2 và OE song song với BD.
3. Đường thẳng kẻ qua O và vuông góc với BC tại N cắt tia EC ở F. Chứng minh BF là tiếp tuyến của đường tròn (O;R).
4. Gọi H là hình chiếu của C trên AB, M là giao của AC và OE. Chứng minh rằng khi điểm C di động trên đường tròn (O; R) và thỏa mãn yêu cầu đề bài thì đường tròn ngoại tiếp tam giác HMN luôn đi qua một điểm cố định.
Cho đường tròn (O) đường kính AB. Lấy điểm C thuộc đường tròn, tiếp tuyến tại A của (O) cắt tia BC tại D. Tiếp tuyến tại C cắt AD ở M. a/ Chứng minh M là trung điểm của AD. b/ Đường thẳng qua O vuông góc với OM cắt CM ở N. Chứng minh BN là tiếp tuyến của (O). c/ Gọi H là hình chiếu của C trên AB, I là trung điểm của CH. Chứng minh A, I, N thẳng hàng.