Cho đường tròn (O;R) và đường thẳng d không đi qua O cắt đường tròn (O) tại hai điểm A và B. Từ một điểm M tùy ý trên đường thẳng d và ở ngoài đường tròn (O) vẽ hai tiếp tuyến MN và MP với đường tròn (O).
1. CMR: MN2 = MP2 = MA.MB
2. Dựng vị trí của điểm M trên đường thẳng d sao cho tứ giác MNOP là hình vuông.
3. Chứng minh rằng tâm của đường tròn nội tiếp và tâm của đường tròn ngoại tiếp tam giác MNP lần lượt chạy trên hai đường thẳng cố định khi M di động trên đường thẳng d.
cho đường tròn (O;R) và đường thẳng d cắt đường tròn tại 2 điểm A, B. từ 1 điểm M trên đường thẳng d và ngoài (O), d không qua tâm O vẽ 2 tiếp tuyến MN, MP với đường tròn (O) (N,P là 2 tiếp điểm)
c, xác định vị trí của M lưu động trên đường thẳng d sao cho tứ giác MNOP là hình vuông
d, chứng minh rằng tâm I của dường tròn nội tiếp tam giác MNP lưu dộngd trên 1 đường cố định khi M lưu đọng trên đường thẳng d
Cho đường tròn (O; R) và đường thẳng d không đi qua O cắt đường tròn (O) tại hai điểm A và B. Từ một điểm M tùy ý trên đường thẳng d và ở ngoài đường tròn (O) vẽ hai tiếp tuyến MN và MP với đường tròn (O).
1. Chứng minh rằng MN2 = MP2 = MA.MB. (câu này mình làm rồi)
2. Dựng vị trí điểm M trên đường thẳng d sao cho tứ giác MNOP là hình vuông.
3. Chứng minh rằng tâm của đường tròn nội tiếp và tâm của đường tròn ngoại tiếp tam giác MNP lần lượt chạy trên hai đường cố định khi M di động trên đường thẳng d.
Cho đường tròn (O , r) và điểm A cố định trên đường tròn. Qua A dựng tiếp tuyến d với đường tròn (O , r). M là điểm chuyển động trên d, từ M kẻ tiếp tuyến đến đường tròn (O, r) có tiếp điểm B (khác A). Tâm của đường tròn ngoại tiếp tam giác AMB và trực tâm tam giác AMB chạy trên đường nào?
Cho đường tròn (O;R) và điểm A cố định ngoài đường tròn. Vẽ đường thẳng d vuông góc với OA tại A. Trên d lấy M. Qua M kẻ tiếp tuyến ME, MF với (O). Nối EF cắt OM tại H, cắt OA tại B. Chứng minh: a) Tứ giác ABHM nội tiếp b) OA.OB = OH.OM = R2 c) Tâm I của đường tròn nội tiếp tam giác MEF thuộc một đường tròn cố định khi M di chuyển trên d d) Tìm vị trí của M để diện tích tam giác HBO lớn nhất
Câu 5. (3,5 điểm) Cho đường tròn tâm O bán kính R và đường thẳng (d) không đi qua O cắt đường tròn (O; R), qua M kẻ hai tiếp tuyến MN và MP tới đường tròn (O; R) (N, P là hai tiếp điểm)
a)Chứng minh rằng tứ giác MNOP nội tiếp được trong một đường tròn, xác định tâm đường tròn đó.
b) Chứng minh rằng MA.MB = MN2
c) Khi điểm M chuyển động trên (d) và nằm ngoài đường tròn (O; R) thì tâm đường tròn ngoại tiếp tam giác MNP di chuyển trên đường nào.
Cho đường tròn tâm O và đường thẳng d không giao nhau với đường tròn. Trên d lấy M bất kì, qua M kẻ 2 tiếp tuyến MA, MB(A,B là các tiếp điểm). Gọi H là hình chiếu của O lên d, AB cắt OH và OM lần lượt ở I và K.
a, Chứng minh: r^2=OI.OH=OK.OM ( r là bán kính đường tròn tâm O)
b, Chứng minh khi M di chuyển trên đường thẳng d thì đường tròn ngoại tiếp tam giác MIK luôn đi qua 2 điểm cố định
cho đường tròn (O) và đường thẳng d cắt đường tròn tại 2 điểm A,B. Từ 1 điểm M bất kì trên d và nằm ở ngoài đường tròn, kẻ các tiếp tuyến MP và MN (P và N là các tiếp điểm). Tìm tập hợp các tâm đường tròn ngoại tiếp tam giác MNP khi M di động trên d.
Bài 1: Cho AB là đường kính của đường tròn (O;R). C là 1 điểm thay đổi trên đường tròn.Kẻ CH vuông góc với
Gọi I là trung điểm của AC,OI cắt tiếp tuyến tại A của đường tròn tại M,MB cắt CH tại K
Xác định vị trí của C để chu vi tam giác ACB đạt GTLN?tìm GTLN đó theo R
Bài 2: Cho đường tròn (O;R) và đường thẳng d không có điểm chung với đường tròn. M là 1 điểm thuộc dt d . Qua M kẻ tiếp tuyến MA,MB với đường tròn. Hạ OH vuông góc với d tại H.Nối Ab cắt OM tại I,OH tại K.Tia OM cắt đường tròn (O;R) tại E
Cm: E là tâm đường tròn nội tiếp tam giác MAB
Tìm vị trí của M trên đường thẳng d để diện tích tam giác OIK có diên tích lớn nhất
Bài 3 :cho 3 điểm a,b,c cố định nằm trên đường thẳng d(b nằm giữa a và c) .Vẽ đường tròn (0) cố định luôn đi qua B và C (0 là không nằm trên đường thẳng D ).Kẻ AM,AN là các tiếp tuyến với (0) tại M ,N .gọi I là trung điểm của BC,OA cắt MN tại H cắt (0) tại P và Q ( P nằm giữa A và O).BC cắt MN tại K
a.CM: O,M,N,I cùng nằm trên 1 đường tròn
b.CM điểm K cố định
c.Gọi D là trung điểm của HQ.Từ H kẻ đường thẳng vuông góc MD cắt MP tại E
d.Cm: P là trung điểm của ME
Bài 4:Cho đường tròn (O;R) đường kính CD=2R. M là 1 điểm thay đổi trên OC . Vẽ đường tròn (O') đường kính MD. Gọi I là trung điểm của MC,đường thẳng qua I vuông góc với CD cắt (O) tại E,F. đường thẳng ED cắt (O') tại P
a.Cm 3 điểm P,M,F thẳng hàng
b.Cm IP là tiếp tuyến của đường tròn (O;R)
c.Tìm vị trí của M trên OC để diện tích tam giác IPO lớn nhất