Cho đường tròn tâm O đường kính AB. Kẻ tiếp tuyến Ax của (O) (A là tiếp điểm). Trên Ax lấy điểm I bất kỳ khác A, kẻ tiếp tuyến IC với (O)(A là tiếp điểm), BC cắt Ax tại D.A)
a) Chứng minh tứ giác OAIC nội tiếp và OI // DB
b) Gọi E là giao điểm của IB và (O), E khác B.
c) Kẻ đường cao AH của tam giác ABC, H thuộc BC, DE cắt(O) tại F. Chứng minh C, H, F thẳng hàng.
d) Gọi K là giao điểm của BI, CH. Chứng minh diện tích tam giác ABK bằng tổng diện tích tam giác AKC và BKC.
Giúp mình bài này nhé
Cho tam giác ABC có 3 góc nhọn nội tiếp trong (O;R) có đường cao là AD và đường kính là AM; AD cắt (O) tại K
a) chứng minh B, K, M, C là 4 đỉnh của một hình thang cân.
b) Gọi H là điểm đối xứng của K qua BC. Chứng minh H là trực tâm của tam giác ABC
c) BH cắt AC tại E, CH cắt AB tại F. Chứng minh trung điểm I của AH thuộc đường tròn ngoại tiếp tam giác FED. Cho AE=3, CE=4, BH=4. Tính HE.
Mình giải được a và b rồi còn c thì làm mãi không được
Cho tam giác ABC nhọn nội tiếp đường tròn (O); đường cao CP,BN cắt nhau tại H. Q thuộc cung nhỏ BC; E,F lần lượt đối xứng với Q qua AB,AC. Chứng minh: E,H,F thẳng hàng
cho tam giác abc nhọn nội tiếp đường tròn (O).Các đường cao AK, BI cắt nhau tại H.Gọi D,E,F lần lượt là tâm của các đường tròn ngoại tiếp tam giác AIH,AKC,BKI
a) C/m OEDF là hình bình hành
b) CH cắt AB cắt ở J.Cm:
*AK.BI.CJ=AB.BC.AC.sinBAC.sinACB.sinCBA
*AK.BI.CJ=AB.BC.AC.cóCAK.cosABI.cosBAC
c)C/m sinABC.sinACB-cosABC.cosACB=cosBAC
d)Cho biết BAC=60,AB=30mm,BC=15 căn 6.Hãy giải tam giác ABC
Cho đường tròn (O;R), đường kính AB. Lấy điểm C tùy ý trên cung AB sao cho AB < AC.
a) Chứng minh tam giác ABC vuông.
b) Qua A vẽ tiếp tuyến (d) với đường tròn (O), BC cắt (d) tại F. Qua C vẽ tiếp tuyến (d’) với đường tròn (O), (d’) cắt (d) tại D. Chứng minh : DA =DF.
c) Hạ CH vuông góc AB (H thuộc AB), BD cắt CH tại K. Chứng minh K là trung điểm CH.
d) Tia AK cắt DC tại E. Chứng minh EB là tiếp tuyến của (O) , suy ra OE // CA.
Giúp tôi giải câu b),c)
BT1: Cho tam giác ABC ( AB< AC) nội tiếp đường tròn tâm O . Ba đường cao AH, BE, CF cắt nhau tại I. Kẻ đường kính AD của đường tròn O, gọi M là trung điểm BC.
a/ Chứng minh: 4 điểm B, F, E, C cùng nằm trên một đường tròn
b/ Chứng minh : EF < BC
c/ Tứ giác BICD là hình gì ? Vì sao ?
d/ Chứng minh : OM = AI / 2
BT2: Cho đường tròn tâm O, điểm A nằm ngoài đường tròn. Từ A vẽ hai đường thẳng cắt đường tròn, đường thứ nhất cắt đường tròn tại M và N ( M nằm giữa A và N ), đường thứ 2 cắt đường tròn tại E và F ( E nằm giữa A và F ) sao cho MN = EF. Kẻ OH vuông góc MN, OK vuông góc EF.
a/ So sánh AH và AK
b/ Chứng minh : AM = AE
c/ Tứ giác MEFN là hình gì ? Vì sao ?
Cho đường tròn tâm O, bán kính R, đường thẳng d không đi qua O và cắt đường tròn tai 2 điểm A và B. Từ một điểm C trên d (C nằm ngoài đường tròn) kẻ hai tiếp tuyến CM và CN với đường tròn ( M,N thuộc(O)). Gọi H là trung điểm AB, đường thẳng OH cắt tia CN tại K. a/ CM 5 điểm C,O,H,M,N thuộc cùng một đường tròn. b/ CM KN.KC=KH.KO c/ 1 đường thẳng đi qua O song song MN cắt các tia CM,CN lần lược tại E và F. Xác định vị trí của C trên d sao cho diện tích tam giác CEF nhỏ nhất
giúp mình vs mấy bạn
cho tam giác ABC cân tại A. Vẽ nửa đường tròn tâm D đường kính BC cắt AB, AC lần lượt tại E và F. Các dây BF,CE cắt nhau tại H.
a, Cho BC=10cm ; AB=13cm. Tính AD.
b. chứng minh bốn điểm A,E,H,F cùng nằm trên đường tròn. Xác định tâm O của đường tròn đó
c. chứng minh DE là tiếp tuyến của đường tròn tâm O
Bài 1 : Cho tam giác ABC nhọn nội tiếp ( O ; R ) , H là trực tâm tam giác ABC . Vẽ đường kính AD của ( O ; R ) . Chứng minh :
a, BH // DC
b, tứ giác BHCD là hình bình hành
c, Gọi giao điểm của BH và AC là E , góc BAC = 60* , góc ACB = 45* , AC = 5 cm . Tính diện tích tam giác ABC
Bài 2 : Cho ( O;R ) dây AB không qua tâm . Vẽ dây AC vuông góc với dây AB tại A , C thuộc ( O ) . Chứng minh :
a, B , O , C thẳng hàng
b, diện tích tâm giác ABC nhỏ hơn hoặc bằng \(R^2\)