mọi người giúp em với, em sắp phải đi học rồi ạ
mọi người giúp em với, em sắp phải đi học rồi ạ
Cho đường tròn (O) đường kính AB. Vẽ dây CD vuông góc với AB tại điểm E trên AB. H là hình chiếu của điểm I trên AD. Chứng minh rằng trên đường thẳng HE đi qua trung điểm M của BC.
Gọi O là tâm đường tròn đường kính AB Gọi H là điểm nămf giữa A và O từ h vẽ dây cd vuông góc với ab hai đừng thẳng bc vad da cắt nhau tại m gọi n là hình chiếu vuông góc của m lên đường thẳng ab tiếp tuyến tain a của đường tròn cắt nc tại đieemr thứ hai là e chứng minh rằng đuong thẳng eb đi quan trung điểm của ch
Cho đường tròn (O) có dây AB không đi qua tâm, M là trung điểm của AB. Gọi N là điểm đối xứng với M qua O. Lấy điểm K bất kì trên (O). Đường thẳng qua K vuông góc với NK cắt đường thẳng qua A vuông góc AB tại điểm C, H là hình chiếu của K trên AB. Chứng minh rằng BC chia đôi KH ?
Bài 4: Cho đường tròn tâm O đường kính AC. Trên đoạn thẳng OC lấy điểm B và vẽ đường tròn O’ có đường kính BC. Gọi M là trung điểm của AB, qua M kẻ dây cung vuông góc với AB cắt đường tròn O tại D và E. Nối CD cắt đường tròn O’ tại I
a/ Chứng minh DAEB là hình gì?
b/ Chứng minh MI = MD và MI là tiếp tuyến của đường tròn O’
c/ Gọi H là hình chiếu của I trên BC. Chứng minh CH.MB= BH.MC
Mn giúp em với ạ, cảm ơn mn nhìu :>
GIẢI GIÚP HA MIK NHA MỌI NGƯỜI
2) CHO ĐƯỜNG TRÒN (O) VÀ ĐIỂM M NẰM NGOÀI ĐƯỜNG TRÒN. VẼ 2 TIẾP TUYẾN MA,MB VỚI(O),(A,B LÀ TIẾP ĐIỂM).VẼ ĐƯỜNG KÍNH BC CỦA (O) VÀ GỌI H LÀ HÌNH CHIẾU CỦA A TRÊN ĐƯỜNG KÍNH BC CỦA(O).CHỨNG MINH MC ĐI QUA TRUG ĐIỂM I CỦA AH.
3) CHO NỬA ĐƯỜNG TRÒN (O) ĐƯỜNG KÍNH AB=2R VÀ LẤY ĐIỂM H TRÊN CẠNH OB QU H VẼ DÂY CD VUÔNG GÓC VỚI AB. TIẾP TUYẾN C CẮT CÁC TIẾP TUYẾN TẠI A,B CỦA(O) TẠI M,N; BM CẮT` CD TẠI I. CHỨNG MINH A,N,I THẲNG HÀNG.
1 . Cho hình vuông ABCD. Gọi O là giao điểm của hai đường chéo. Qua điểm C kẻ đường thẳng Cx song song với BD; Cx cắt AB tại E.
a) Chứng minh tam giác ACE vuông cân
b) Gọi F là điểm đối xứng của O qua AB. Tứ giác AOBF là hình gì? Vì sao?
c) Giả sử APCQ là hình thoi có chung đường chéo AC với hình vuông ABCD. Hãy chứng tỏ 4 điểm P, D, B, Q thẳng hàng
Bài 2:Đường tròn tâm O và một dây AB của đường tròn đó. Các tiếp tuyến vẽ từ A và B của đường tròn cắt nhau tại C. D là một điểm trên đường tròn có đường kính OC (D khác A và B). CD cắt cung AB của đường tròn (O) tại E (E nằm giữa C và D). Chứng minh:
a) Góc BED = góc DAE
b) DE2 = DA.DB
Bài 3:Cho (O) dây AB vuông góc dây CD M là trung điểm BC. Chứng minh rằng OM=1/2AD
Cho nửa đường tròn tâm O đường kính AB và tiếp tuyến Ax (A là tiếp điểm, Ax nằm ở nửa mặt phẳng chứa nửa đường tròn bò là AB). Trên đoạn AB lấy điểm M (M khác A, M khác B), đường thẳng vuông góc với AB tại M cắt nửa đường tròn tâm O tại C, tia BC cắt Ax tại D. Gọi N là trung điểm của AD. Gọi H là giao điểm của ON và AC. Kẻ HE vuông góc với AN (E thuộc AN). Đường tròn đường kính NC cắt EC tại F. Chứng minh NF luôn đi qua 1 điểm cố định khi M di chuyển trên AB.
Cho đường tròn tâm O đường kính MN, dây cung AB vuông góc với MN tại điểm I nằm giữa O, N. Gọi K là một điểm thuộc dây AB nằm giữa A, I. Các tia MK, NK cắt đường tròn tâm O theo thứ tự tại C,D. Gọi E, F, H lần lượt là hình chiếu của C trên các đường thẳng AD, AB, BD. Chứng minh rằng:
a) AC.HF = AD.CF
b) F là trung điểm của EH
c) Hai đường thẳng DC và DI đối xứng nhau qua đường thẳng DN.
Cho (O; R) có đường kính AB. Lấy điểm C trên đường tròn sao cho AC = R.
a) Tính BC theo R và các góc của ΔABC.
b) Gọi M là trung điểm của OA. Vẽ dây CD vuông góc với AB tại M. Chứng
minh: tứ giác ACOD là hình thoi.
c) Tiếp tuyến tại C của đường tròn cắt đường thẳng AB tại E. Chứng minh: ED
là tiếp tuyến của (O).
d) Hai đường thẳng EC và DO cắt nhau tại F. Chứng minh: C là trung điểm của EF
Cho đường tròn (O) đường kính AB. Lấy điểm C thuộc đường tròn (O), với C khác A và B, biết CA < CB. Lấy điểm M thuộc đoạn OB, với M khác O và B. Đường thẳng đi qua điểm M vuông góc với AB cắt hai đường thẳng AC và BC lần lượt tại hai điểm D và H.
1) Chứng minh bốn điểm A, C, H, M cùng thuộc một đường tròn và xác định tâm của đường tròn này.
2) Chứng minh: MA.MB = MD.MH
3) Gọi E là giao điểm của đường thẳng BD với đường tròn (O), E khác B. Chứng minh ba điểm A, H, E thẳng hàng.
4) Trên tia đối của tia BA lấy điểm N sao cho MN = AB, Gọi P và Q tương ứng là hình chiếu vuông góc của điểm M trên BD và N trên AD.
Chứng minh bốn điểm D, Q, H, P cùng thuộc một đường tròn.