Cho đường tròn (O;R) đường kính AB. Điểm C thuộc đường tròn sao cho AB>CB;C khác A và B.Kẻ CH vuông góc với AB tại H, kẻ OI vuông góc với AC tại I 1/Chứng minh 4 điểm C,H,O,I CÙNG THUỘC MỘT ĐƯỜNG TRÒN 2/kẻ tiếp tuyến Ax của đường tròn (O), tia OI cắt Ax tại M.C/m MC là tiếp tuyến của đường tròn O 3/C/m tam giác AMO đồng dạng với HCB 4/Gọi K là giao điểm của CH và MB. Chứng minh K là trung điểm của CH
Cho đường tròn tâm O, đường kinh AB. Kẻ tiếp tuyến Ax của đường tròn tại A. Lậy D thuộc Ax sao cho AD = AB. Cho BD cắt đường tròn (O) tại điểm C. Gọi E là điểm di động trên đoạn thẳng AC, kẻ EH vuông góc với AD tại H, kẻ FK vuông góc với AB tai K. 1. Chứng minh CDHE là tứ giác nội tiếp 2. Chứng minh góc EHC bằng góc EBC.
1. Cho đường tròn (O), đường kính AB, dây AM. Kéo dài AM một đoạn MC = AM
a) Chứng minh AB = BC
b) Gọi N là trung điểm BC. Chứng minh tứ giác BOMN là hình thoi.
2. Cho đường tròn (O), đường kính AB, tiếp tuyến Ax. Trên Ax lấy điểm M, vẽ tiếp tuyến
MC với đường tròn (C là tiếp điểm).
a) Chứng minh OM // BC
b) Từ O vẽ đường thẳng vuông góc AB cắt BC tại N. Chứng minh BOMN là hình bình hành
c) Chứng minh COMN là hình thang cân
3.Cho đường tròn (O), đường kính AB, tiếp tuyến Ax. Trên Ax lấy điểm M, vẽ tiếp tuyến
MC với đường tròn (C là tiếp điểm).Kẻ CH vuông góc với AB tại H
a) Chứng minh CA là phân giác góc HCM
b) Kẻ CH vuông góc Ax tại K, gọi I là giao điểm của AC và HK. Chứng minh tam giác AIO vuông
c) Chứng minh 3 điểm M, I, O thẳng hàng
1. Cho đường tròn (O), đường kính AB, dây AM. Kéo dài AM một đoạn MC = AM
a) Chứng minh AB = BC
b) Gọi N là trung điểm BC. Chứng minh tứ giác BOMN là hình thoi.
2. Cho đường tròn (O), đường kính AB, tiếp tuyến Ax. Trên Ax lấy điểm M, vẽ tiếp tuyến
MC với đường tròn (C là tiếp điểm).
a) Chứng minh OM // BC
b) Từ O vẽ đường thẳng vuông góc AB cắt BC tại N. Chứng minh BOMN là hình bình hành
c) Chứng minh COMN là hình thang cân
3.Cho đường tròn (O), đường kính AB, tiếp tuyến Ax. Trên Ax lấy điểm M, vẽ tiếp tuyến
MC với đường tròn (C là tiếp điểm).Kẻ CH vuông góc với AB tại H
a) Chứng minh CA là phân giác góc HCM
b) Kẻ CH vuông góc Ax tại K, gọi I là giao điểm của AC và HK. Chứng minh tam giác AIO vuông
c) Chứng minh 3 điểm M, I, O thẳng hàng
Mọi người ơi giúp e vsssssssssssssss.........E hỏi mà hong ai chỉ T.T
Cho đường tròn (O;R) đường kính AB. Điểm C thuộc đường tròn sao cho AC>CB, C khác A và B. Kẻ CH vuông góc với AB tại H, kẻ OI vuông góc với AC tại I, kẻ tiếp tuyến Ax của đường tròn (O;R), tia OI cắt Ax tại M. Gọi giao điểm BM với CH là K. Chứng minh tam giác AMO đồng dạng với tam giác HCB và KC=KH
cho nửa (O) đường kính AB= 2R và tia tiếp tuyến Ax cùng phía vối nửa đường tròn đối với AB . từ điểm M trên Ax kẻ tiếp tuyến thứ hai MC với nửa đường tròn (C là tiếp điểm ) .AC cất OM tại E ; MBcats nửa đường tròn tâm O tại D ( D khác B ) . vẽ CH vuông góc với AB (H thuộc AB ) cmr MB đi qua trung điểm của CH
Cho nửa đường tròn, đường kính AB, kẻ 2 tiếp tuyến Ax và By với nửa đường tròn. Trên Ax và By lấy 2 điểm C và D sa cho góc COD=90 độ. Kẻ OH vuông góc với CD
A) CMR: A,C,H,O cùng thuộc 1 đường tròn
B) CMR: CD là tiếp tuyến của đường trong (O)
C) CMR: AC.BD=R²
Cho nửa đường tròn tâm O đường kính AB và tiếp tuyến Ax (A là tiếp điểm, Ax nằm ở nửa mặt phẳng chứa nửa đường tròn bò là AB). Trên đoạn AB lấy điểm M (M khác A, M khác B), đường thẳng vuông góc với AB tại M cắt nửa đường tròn tâm O tại C, tia BC cắt Ax tại D. Gọi N là trung điểm của AD. Gọi H là giao điểm của ON và AC. Kẻ HE vuông góc với AN (E thuộc AN). Đường tròn đường kính NC cắt EC tại F. Chứng minh NF luôn đi qua 1 điểm cố định khi M di chuyển trên AB.
Cho đường tròn tâm O bán kính BC.Lấy điểm A thuộc đường tròn ,trên cùng 1 nửa mặt phẳng bờ AB chứa A vẽ tiếp tuyến Bx cắt CA tại D.Từ D kẻ tiếp tuyến DE với E là tiếp điểm. Gọi I là giap điểm của OD và BE.a) cho F là trung điểm của BD chứng minh FA là tiếp tuyến của đường tròn tâm O,b) Chứng minh rằng góc DEA = góc DCE,c) KẺ EH vuông góc với BC tại H cắt AC tại G.Chứng minh IG//BC