Cho đường tròn tâm O , đường kính AB . Trên đường tròn lấy 1 điểm C sao cho AC>BC.Các tiếp tuyến tại A và tại C của (O) cắt nhau tại D , BD cắt (O) tại E . Vẽ CH vuông góc với AB tại H, I là giao điểm của DH và AE . Tiếp tuyến tại E của (O) cắt AD tại M . Chứng minh : 3 điểm M,I,C thẳng hàng.
1. cho tam giác ABC.Tia Ax nằm khác phía với AC đối với đường thẳng AB thỏa mãn góc xAB bằng góc ACB.chứng minh Ax là tiếp tuyến của đường tròn ngoại tiếp tam giác ABC
2.cho nửa đường tròn (O) đường kính AB trên đoạn AB lấy điểm M,gọi H là trung điểm của AM.đường thẳng qua H vuông góc với AB cắt (O) tại C .đường tròn đường kính MB cắt BC tại I. CM HI là tiếp tuyến của đường tròn đường kính MB
3.cho nửa đường tròn tâm O đường kính AB, C thuộc nửa đường tròn.vẽ CH vuông góc với AB(H thuộc AB),M là trung điểm CH,BM cắt tiếp tuyến Ax của O tại P .chứng minh PC là tiếp tuyến của (O)
4.cho đường tròn O đường kính AB, M là một điểm trên OB.đường thẳng qua M vuông góc với AB tại M cắt O tại C và D. AC cắt BD tại P,AD cắt BC tại Q,AB cắt PQ tai I chứng minh IC,ID là tiếp tuyến của (O)
5.cho tam giác ABC nội tiếp đường tròn đường kính BC (AB<AC).T là một điểm thuộc OC.đường thẳng qua T vuông góc với BC cắt AC tại H và cắt tiếp tuyến tại A của O tại P.BH cắt (O) tại D. chứng minh PD là tiếp tuyến của O
6.cho tam giác ABC nội tiếp đường tròn O. phân giác góc BAC cắt BC tại D và cắt (O) tại M chứng minh BM là tiếp tuyến của đường tròn ngoại tiếp tam giác ABD
Câu 1: Cho (O;R) và điểm A nằm ngoài đường tròn (O). Vẽ 2 tiếp tuyến AB, AC của (O) (B,C: tiếp điểm). Vẽ cát tuyến ADE của (O); D nằm giữa D & E; tia AD nằm giữa 2 tia AB và AO.
a) Gọi H là giao điểm của OA và BC. C/m: DEOH nội tiếp
b) Đường thẳng AO cắt (O) tại M và N (M nằm giữa A và O). C/m: EH.AD= MH.AN
Câu 2: Cho nửa đường tròn tâm (O;R) đường kính AB và điểm C trên đường tròn sao cho CA=CB. Gọi M là trung điểm của dây cung AC. Nối BM cắt cung AC tại E; AE và BC kéo dài cắt nhau tại D.
a) C/m: MOCD là hình bình hành
b) Vẽ đường tròn tâm E bán kính EA cắt (O) tại điểm thứ 2 là N. Kẻ EF vuông góc với AC, EF cắt AN tại I, cắt (O) tại điểm thứ 2 là K; EB cắt AN tại H. C/m: BHIK nội tiếp.
Câu 3: Cho (O;R). Từ điểm S nằm ngoài đường tròn sao cho SO=2R. Vẽ tiếp tuyến SA,SB (A,B là tiếp tuyến). Vẽ cát tuyến SDE (D nằm giữa S và E), điểm O nằm trong góc ESB. Từ O kẻ đường vuông góc với OA cắt SB tại M. Gọi I là giao điểm của OS và (O).
a) C/m: MI là tiếp tuyến của (O)
b) Qua D kẻ đường vuông góc với OB cắt AB tại H và EB tại K. C/m: H là trung điểm của DK.
Cho đường tròn (O) và điểm A nằm ngoài đường tròn. Vẽ các tiếp tuyến AB và AC với đường tròn (B, C là các tiếp điểm). Đoạn thẳng AO cắt đường tròn (O) tại M. Trên cung nhỏ MC của (O) lấy điểm D. AD cắt (O) tại điểm thứ hai E. I là trung điểm của DE. Đường thẳng qua D vuông góc với BO cắt BC tại H và cắt BE tại K.
a) Chứng minh 4 điểm B, O, I, C cùng thuộc một đường tròn
b) Chứng minh góc ICB=góc IDK
c) Chứng minh H là trung điểm của DK
Cho đường tròn (O;R) có đường kính AB, lấy điểm C trên đường tròn sao cho góc AOC là góc tù, vẽ OH vuông góc với AC tại H tiếp tuyến tại A của đường tròn cắt OH tại D. DB cắt đường tròn tại E. Gọi F là ttrung điểm của BE
a, Cm DC là tiếp tuyến của đường tròn và điểm A, D, C, F, O cùng thuộc 1 đường tròn
b, Cm DA2 = DE.DB và góc EHD = góc EBO
c. CHứng minh HC là tia phân giác góc EHB
d. Tiếp tuyến tại B của (O) cắt tia AC tại K. Chứng minh ba điểm O, F,K thẳng hàng .
AI GIÚP EM VỚI Ạ
Cho đường tròn (O) . Từ một điểm A nằm ngoài đường tròn kẻ các tiếp tuyến AB và AC( B,C là các tiếp điểm). H là giao điểm của OA và BC.
a) Chứng minh AO vuông góc với BC tại H.
b) từ điểm B Vẽ đường kính BD của đường tròn tâm O. Đường thẳng AD cắt đường tròn tâm O tại E( E khác D)
Chứng minh AE.AD=AH.AO
c) qua O kẻ đường thẳng vuông góc với AD tại K cắt BC tại F. Chứng minh FD là tiếp tuyến của đường tròn tâm O
Cho đường tròn tâm O đường kính AB. Trên đường tròn lấy điểm C sao cho AC < BC ( C ≠ A). Các tiếp tuyến tại B và C của (O) cắt nhau ở điểm D,AD cắt (O) tại E ( E ≠ A)
a) Chứng minh góc BCE = góc DBE
b) Chứng minh bốn điểm O,B,D,C cùng thuộc một đường tròn
c) Qua C kẻ đường thẳng song song với BD cắt AB tại H. Gọi I là giao điểm của AD và CH. Chứng minh I là trung điểm của CH
Cho đường tròn tâm O và một điểm A nằm ngoài đường tròn này. Từ A vẽ hai tiếp tuyến AB, AC của đường tròn (O) (B và C là hai tiếp điểm). Gọi H là giao điểm của OA và BC.
a. Chứng minh OA vuông góc với BC tại H.
b. Từ B vẽ đường kính BD của (O), đường thẳng AD cắt đường tròn(O) tại E (E khác D). Chứng minh: AE.AD = AC^2
c. Qua O vẽ đường thẳng vuông góc với cạnh AD tại K và cắt đường BC tại F. Chứng minh rằng FD là tiếp tuyến của đường tròn (O).
Cho điểm A nằm ngoài đường tròn (O,R). Vẽ AB, AC là các tiếp tuyến của đường tròn (O) (B, C là các tiếp điểm). Vẽ cát tuyến ADE của đường tròn O ( D nằm giữa A và E). Các tiếp tuyến tại D và E của (O) cắt nhau tại K, OA cắt Bc tại H.
a) Chứng minh KH vuông góc với OA; K, B, C thẳng hàng.
b) AO cắt (O) tại M, N ( M nằm giữa O, H). Chứng minh KH, DN, EM đồng quy