Ta có: R = \(\dfrac{1}{2}\) d = \(\dfrac{1}{2}\)12 = 6cm
=> l = \(\dfrac{\Pi Rn}{180}\) = \(\dfrac{\Pi.6.120}{180}\) = 4π
Ta có: R = \(\dfrac{1}{2}\) d = \(\dfrac{1}{2}\)12 = 6cm
=> l = \(\dfrac{\Pi Rn}{180}\) = \(\dfrac{\Pi.6.120}{180}\) = 4π
bài 1: cho đường tròn tâm /o bán kính 2cm. Góc SOB =60.
a) tính sđ cung AmB
b) tính độ dài hai cung AnB và AmB, độ dài đường tròn tâm O
c) tính diện tích hình tròn, diện tích hình quạt tròn OAnB.
bài 2: cho tam giác ABC có 3 góc nhọn. Đừng tròn tâm O đường kính BC cắt AB, AC lần lượt tại I và K. BK và CI cắt nhua tại H. Tia AH cắt BC tại M.
a) chứng minh \(AM\perp BC\)
b) chứng minh tứ giác BIHM, CMHK, AKMB nội tiếp. xác định tâm đường tròn ngoại tiếp
cho (O;3cm) lấy A,B trên (O) chia đường tròn thành 2 cung, cung nhỏ AmB và cung lớn AnB sao AOB =80°
a/tính số đo ANB
b/ tính độ dài cung AmB
c/ Tính diện tích, chu vi đường tròn (O)
d/ tính diện tích hình quạt tròn OAnB
Cho đường tròn tâm O đường kính AB. Các điểm C, D, E cùng thuộc một cung AB sao cho sđ ∠ BC = 1 6 sđ ∠ BA; sđ ∠ BD = 1 2 sđ ∠ BA; sđ ∠ BE = 2 3 sđ ∠ BA. So sánh hai cung nhỏ AE và BC.
Cho đường tròn tâm O đường kính AB. Các điểm C, D, E cùng thuộc một cung AB sao cho sđ ∠ BC = 1 6 sđ ∠ BA; sđ ∠ BD = 1 2 sđ ∠ BA; sđ ∠ BE = 2 3 sđ ∠ BA. Cho biết tên của các cặp cung có số đo bằng nhau (nhỏ hơn 180 ° ).
Cho đường tròn (O; 4cm) có đường kính BC. Gọi A là điểm nằm trên đường tròn sao cho góc vuông ABC=30°. Trên tia AC lấy điểm P sao cho AP=AB. Đường thẳng vuông góc hạ từ P xuống BC cắt BC ở H và cắt BA ở D. Kẻ PB cắt đường tròn (O) tại I.
a)Tính độ dài đường tròn và diện tích hình tròn.
b)Chứng minh tứ giác ACHD nội tiếp.
c)Tam giác ABP là tam giác gì? Tính góc vuông APB, sđ cung ACI.
d)Tính độ dài cung tròn cung ACI và diện diện của hình quạt OAI.
Cho nửa đường tròn (O; R) đường kính AB. Vẽ dây CD = R (C thuộc cung AD). Nối AC và BD cắt nhau tại M
a, Chứng minh rằng khi CD thay đổi vị trí trên nửa đường tròn thì độ lớn góc A M B ^ không đổi
b, Cho A B C ^ = 30 0 , tính độ dài cung nhỏ AC và diện tích hình viên phân giói hạn bởi dây AC và cung nhỏ AC
Cho đường tròn O bán kính 3cm gọi A,B là hai điểm thuộc đường tròn O sao cho độ dài cung nhỏ AB là (cm). Tính số đo góc AOB
Cho tam giác ABC nội tiếp đường tròn (O) đường kính BC(AB<AC, góc AOB>60 độ), D là một điểm thuộc cung nhỏ AB sao cho DA=DB. Đường trung trực của đoạn OA cắt đường tròn (O) tại E và F(F thuộc cung nhỏ AC)
a)CMR sđ cung FC=2 sđ cung DE
b)Đường thẳng qua O song song với DA cắt AC tại J. CMR EJ là phân giác của góc CEF