Cho nửa đường tròn (O), đường kính AB và một dây cung CD. Kẻ AE và BF vuông góc với CD lần lượt tại E và F. Chứng minh:
a, CE = DF
b, E và F đều ở ngoài (O)
Cho nửa đường tròn tâm O đường kính AB, dây CD có độ dài không đổi và khác AB. Gọi I là hình chiếu vuông góc của O trên CD; H,K theo thứ tự là hình chiếu vuông góc của A,B trên CD
a) Chứng minh I là trung điểm HK
b) Gọi E là hình chiếu vuông góc của I trên AB. Chứng minh rằng Sacb + Sadb = IE.AB
c) Tìm vị trí dây CD để diện tích AHKB lớn nhất
cứu mình với huuhhu
Cho đương tròn(O, R), dây AB cố định không đi qua tâm. C là điểm nằm trên cung nhỏ AB sao cho cung AC không lớn hơn cung BC. Kẻ dây CD vuông góc với AB tại H. Gọi điểm K là hình chiếu vuông góc của C trên đường thẳng DA.
a) Chứng minh: Bốn điểm A, H, C, K cùng thuộc một đường tròn.
b) Chứng minh: CD là tia phân giác của góc BCK
c) KH cắt BD tại E. Chứng minh: CE vuông góc BD
d) Khi điểm C di chuyển trên cung nhỏ AB. Xác định vị trí của điểm C để CK. AB + CE. DB có giá trị lớn nhất?
Cho nửa đường tròn tâm O, đường kính AB = 10 cm. Dây CD có hai điểm C và D thay đổi
trên đường tròn và độ dài không đổi bằng 8 cm. Gọi E và F lần lượt là hình chiếu vuông góc của A
và B trên CD.
a) Chứng minh
CE=BF .
b) Xác định vị trí của CD để diện tích tứ giác ABFE lớn nhất.
Cho ( O ) đường kính AB, dây CD không cắt AB. Gọi E,F lần lượt là chân đường vuông góc kẻ từ A và B đến CD. Chứng minh CE=DF
Cho đường tròn tâm O đường kính AB. Dây CD vuông góc với AB tại E (E nằm giữa A và O; E không trùng A, không trùng O). Lấy điểm M thuộc cung nhỏ BC sao cho cung MB nhỏ hơn cung MC. Dây AM cắt CD tại F. Tia BM cắt đường thẳng CD tại K. 1.Chứng minh tứ giác BMFE nội tiếp. 2.Chứng minh BF vuông góc với AK và EK.EF = EA.EB 3.Tiếp tuyến của (O) tại M cắt tia KD tại I. Chứng minh IK = IF.
Cho đường tròn (O; R), đường kính AB cố định. Gọi M là trung điểm đoạn OB. Dây CD vuông góc với AB tại M. Điểm E chuyên động trên cung lớn CD (E khác A). Nôi AE cắt CD tại K. Nối BE cắt CD tại H
a, Chứng minh bốn điểm B, M, E, K thuộc một đường tròn
b, Chứng minh AE.AK không đổi
c, Tính theo R diện tích hình quạt tròn giới hạn bởi OB, OC và cung nhỏ BC
cho nửa đường tròn tâm o đường kính ab dây cd
kẻ ea, bf vuông góc với cd tại e, f
chứng minh e, f nằm ngoài đường tròn
Cho đường tròn tâm O đường kính AB, dây CD vuông góc với AB tại H. Trên tia đối của tia CD, lấy điểm M nằm ngoài đường tròn(O). Kẻ MB cắt đường tròn tại E, AE cắt CD tại F.
a, Chứng minh tứ giác BEFH nội tiếp.
b,Gọi k là là giao điểm BF với đường tròn (O). Chứng minh EA là tia phân giác của goc HEK.
c, CHứng minh MD.FC=MC.FD.
Cho đường tròn tâm O đường kính AB. Vẽ dây cung CD vuông góc với AB tại I ( I nằm giữa A và O ). Lấy điểm E trên cung nhỏ BC (E khác B và C) AE cắt CD tại F . Chứng minh: bốn điểm B E F I thuộc một đường tròn.