Trường hợp A và B nằm trên hai nửa mặt phẳng đối bờ chứa đường thẳng d
Kẻ CH ⊥ d cắt A'B tại K
⇒ CH // AA' // BB'
Trong ∆ AA'B ta có: AC = CB
Mà CK // AA' nên A'K = KB và CK là đường trung bình của tam giác AA'B
⇒CK= AA'/2 (tính chất đường trung bình của tam giác)
CK = 20/2 = 10(cm)
Trong ∆ A'BB' có A'K = KB và KH // BB'
Nên KH là đường trung bình của ∆ A'BB'
⇒ KH = BB'/2 (tính chất đường trung bình của tam giác)
⇒ KH = 6/2 =3 (cm)
CH = CK – KH = 10 – 3 = 7(cm)