Do đường thẳng d2 song song với d1 nên d2 có dạng : y = 1 2 x + b b ≠ - 2
Điểm A(2; 4) thuộc đường thẳng d2 nên: 4 = 1 2 . 2 + b ⇔ b = 3
Vậy phương trình đường thẳng d2: y = 1 2 x + 3
Chọn đáp án là C.
Do đường thẳng d2 song song với d1 nên d2 có dạng : y = 1 2 x + b b ≠ - 2
Điểm A(2; 4) thuộc đường thẳng d2 nên: 4 = 1 2 . 2 + b ⇔ b = 3
Vậy phương trình đường thẳng d2: y = 1 2 x + 3
Chọn đáp án là C.
Viết phương trình đường thẳng (△):
a) đi qua M(1;2), vtcp u=(3;-4)
b) đi qua M(-2;4), vtpt n=(2;3)
c) đi qua 2 điểm A(-2;1); B(3;2)
d) đi qua M(4;-2), song song d: 3x-5y+7=0
e) đi qua N(1;-3), song song d: \(\left\{{}\begin{matrix}x-1-3t\\y=2+t\end{matrix}\right.\)
f) đi qua P(3;5), vuông góc (d): 2x-7y-1=0
g) đi qua Q(-2;0), vuông góc (d): \(\left\{{}\begin{matrix}x=2+5t\\y=1-t\end{matrix}\right.\)
h) đi qua I(1;-1) và tạo (d): x-3y+7=0 một góc α=\(\dfrac{\sqrt{2}}{10}\)
l) đi qua J(1;-1) và cách điểm K(2;3) một khoảng là \(\dfrac{19}{5}\)
Cho đường tròn (C): (x+ 1) 2 + (y-3)2 = 4 và đường thẳng d: 3x-4y + 5= 0. Phương trình của đường thẳng d’ song song với đường thẳng d và chắn trên (C) một dây cung có độ dài lớn nhất là:
A.3x – 4y + 1= 0
B. 3x - 4y +5 = 0
C.3x- 4y +15= 0
D.3x- 4y +10= 0
1) Tính khoảng cách từ điểm M đến đường thẳng d, với:
M(3,5); (d): x + y + 1 =0
M(2,3); (d): {x-2t, y = 2 + 3t
M(2,-3); (d): (x - 2)/2 = ( y + 1)/3
2) Viết phưởng trình đường thẳng d song song với đường thẳng △: 2x - y +3 =0 và cách △ một khoảng bằng căn 5
Bài 1: Tìm a, b biết đường thẳng y = ax + b
a) Đi qua hai điểm A (-4; 2) và B (-1; 3)
b) Đi qua điểm C (4; -1) và song song đường thẳng: y = 2x + 4
c) Đi qua điểm D (-2; 3) và vuông góc đường thẳng: y = -3x + 1
Bài 2: Tìm a, b, c biết parabol y = ax2 + bx + c đi qua A (1; -4) và có đỉnh I (3; -8)
Bài 3: Xét tính chẵn, lẻ của các hàm số sau:
a) y = x4 + 6x2 + 1
b) y = 2x + 3
c) y = \(\sqrt{7-x}-\sqrt{7-x}\)
Cho đường tròn (C) : (x- 3) 2+ (y +1) 2= 5. Phương trình tiếp tuyến của (C) song song với đường thẳng d : 2x+ y + 5 = 0 là:
A . 2x+ y= 0 và 2x+ y -10= 0
B. 2x+ y= 2= 0 và 2x+ y-8= 0
C. 2x+ y+ 10 =0 và 2x+ y= 0
D. 2x+ y-10= 0
Phần 1: Đại số
Câu 1 (2đ): Xét dấu các biểu thức sau:
a.
f x x 3 4
; c.
2
f x x x x 1 2 5 2 .
b.
2
f x x x 9 6 1
; d.
2
2 5
2
x
f x
x x
.
Câu 2 (4đ): Giải các bất phương trình sau:
a.
2
3 4 4 0 x x
; c.
2
1 2 5
0
3
x x
x
.
b.
2
2 4 4 0 x x x
; d.
2
2
5 2 3
0
2
x x
x x
.
Câu 3 (1đ): Xác định miền nghiệm của bất phương trình sau:
2 3 1 0. x y
Phần 2: Hình học
Câu 1 (2đ): Cho tam giác ABC biết
A B và C 1; 4 , 3; 1 6; 2 .
a) Lập phương trình tham số đường thẳng chứa cạnh BC của tam giác.
b) Lập phương trình tổng quát đường cao hạ từ A của tam giác ABC.
c) Lập phương trình tổng quát đường thẳng đi qua B và song song với đường thẳng
d x y : 3 1 0.
Câu 2 (1đ): Xét vị trí tương đối và tìm giao điểm (nếu có) của 2 đường thẳng sau:
1
d : 2 3 0 x y
và
2
d : 2 3 0.
Cho đường thẳng (d) :y=(m+1)x+m
câu 1 : giá trị m để đường thẳng (d) song song với đường thẳng (d1):y=2x+3
A:m=1 B:m=2 C:m=3 D: không có giá trị m
câu 2 : giá trị m để đường thẳng (d) trùng với đường thẳng (d2) y=x+3
A:m=1 B:m=2 C:m=0 D: không có giá trị m
câu 3 : giá trị m để đường thẳng (d) vuông góc với đường thẳng (d3) y=x+3
A:m=-1 B:m=-2 C:m=0 D: không có giá trị m
câu 4 : giá trị m để đường thẳng (d) cắt Parabol (P) y=x2 tại một điểm
A:m=1 B:m=2 C:m=3 D: không có giá trị m
câu 5 : giá trị m để đường thẳng (d) cắt Parabol (P) y=x2 tại hai điểm phân biệt có hoành độ x1, x2 thỏa x12+ x22= 1
A:m=1 B:m=2 C:m=3 D: không có giá trị m
Bài 1: Lập phương trình đường thẳng d' đối xứng với đường thẳng d qua đường thẳng Δ, với:
a, d: 2x-y+1=0, Δ: 3x-4y+2=0
b, d: x-2y+4=0, Δ: 2x+y-2=0
c, d: x+y-1=0, Δ: x-3y+3=0
d, d: 2x-3y+1=0, Δ: 2x-3y-1=0
Bài 2: Lập phương trình đường thẳng d' đối xứng với đường thẳng d qua điểm I với:
a, d: 2x-y+1=0, I(2;1)
b, d: x-2y+4=0, I(-3;0)
c, d: x+y-1=0, I(0:3)
d, d: 2x-3y+1=0, I trùng O(0;0)
GIÚP EM VỚI Ạ!! EM ĐANG CẦN GẤP LẮM HUHUU T^T EM XIN CẢM ƠN!!!
Bài 1. Viết phương trình tổng quát, phương trình tham số của đường thẳng trong mỗi trường hợp sau:
a) Đi qua A(1;-2) và // với đường thẳng 2x - 3y - 3 = 0.
b) Đi qua hai điểm M(1;-1) và N(3;2).
c) Đi qua điểm P(2;1) và vuông góc với đường thẳng x - y + 5 = 0.
Bài 2. Cho tam giác ABC biết A(-4;1), B(2;4), C(2;-2).
Tính khoảng cách từ điểm C đến đường thẳng AB.
Bài 3. Cho tam giaùc ABC coù: A(3;-5), B(1;-3), C(2;-2).Vieát phöông trình toång quaùt cuûa:
a) 3 caïnh AB, AC, BC
b) Ñöôøng thaúng qua A vaø song song vôùi BC
c)Trung tuyeán AM vaø ñöôøng cao AH cuûa tam giaùc ABC
d) Ñöôøng thaúng qua troïng taâm G cuûa tam giaùc ABC vaø vuoâng goùc vôùi AC
e) Ñöôøng trung tröïc cuûa caïnh BC
Bài 4. Cho tam giaùc ABC coù: A(1 ; 3), B(5 ; 6), C(7 ; 0).:
a) Vieát phöông trình toång quaùt cuûa 3 caïnh AB, AC, BC
b) Viết phương trình đđöôøng trung bình song song cạnh AB
c) Viết phương trình đường thẳng qua A và cắt hai trục tọa độ tại M,N sao cho AM = AN
d) Tìm tọa độ điểm A’ là chân đường cao kẻ từ A trong tam giaùc ABC
Bài 5. Viết phương trình đường tròn có tâm I(1; -2) và
a) đi qua điểm A(3;5).
b) tiếp xúc với đường thẳng có pt x + y = 1.