Cho tam giác abc, ab=ac. Trên cạnh ab và ac lần lượt lấy 2 điểm m và n sao cho am=an. Gọi e và d lần lượt là trung điểm của mn và bc. Cmr: a d e thẳng hàng
gọi D là trung điểm của cạnh BC của tam giác ABC qua D kẻ đường thẳng vuông góc với đường phân giác trong của góc BAC cắt AB, AC lần lượt ở M và N . a) chứng minh BM = CN . b) cho biết AB = c , AC = b tính độ đà các đoạn thẳng am và bm
Cho tam giác ABC có 3 góc nhọn. Vẽ đoạn thẳng AM vuông góc với AB và AM = AB .Vẽ đoạn thẳng AN vuông góc với AC và AN = AC. Gọi I và K lần lượt là trung điểm của BN và MC. CMR:AI = AK và AI vuông góc với AK
Cho tam giác ABC có AB=AC .Trên hai cạnh AB và AC lần lượt lấy 2 điểm M và N sao cho AM=AN . Gọi D,E làm lượt là trung điểm của MN và BC .CMR : 3 điểm A,E,D thẳng hàng
Cho tam giác ABC cân tại A, M là trung điểm của đoạn thẳng BC. Kẻ MH vuông góc với AB (H thuộc AB); MK vuông góc với AC (K thuộc AC). a) Chứng minh góc MAB= góc MAC và AH= AK. b) Chứng minh AM là đường trung trực của đoạn thẳng HK. c) Cho biết AB= 8cm; BC= 6cm. Tính độ dài đoạn thẳng AM. d) Gọi I là giao điểm của AM và HK. Chứng minh IK< MC.
Cho tam giác ABC có AB=AC=7,5cm và BC=9cm. Gọi M là trung điểm của cạnh BC
a) CMR : AM vuông góc với BC
b) Tính độ dài đoạn thẳng AM
c) Gọi N là trung điểm của cạnh AB. Tính độ dài đoạn thẳng MN
d) CMR : MN song song với AC
Cho tam giác ABC có góc A nhọn, vẽ tia Ax vuông góc với AB ( tia AC nằm giữa 2 tia AB và Ax) và trên đó lấy điểm E sao cho AE = AB. Vẽ tia Ay vuông góc với AC ( tia AB nằm giữa 2 tia Ay và AC) và trên đó lấy điểm F sao cho AF = AC.
a) CM: BF = CE
b) Gọi M, N lần lượt là trung điểm của các đoạn thẳng BF, CE. Kẻ AM, AN. CMR: AM vuông góc với AN
Cho tam giác nhọn ABC. Trên tia đối của các tia AB, AC lấy lần lượt các điểm D, E sao cho AD=AB; AE=AC. Gọi M, N lần lượt là trung điểm của các đoạn thẳng BC và DE. Chứng minh:
a) \(\Delta ABC=\Delta ADE\)
b) BC // DE
c) AM=AN
d) M, A, N thẳng hàng
Cho tam giác ABC có AB=AC(AB<BC), M là trung điểm của BC
a) Chứng minh tam giác ABM= tam giác ACM và AM là tia phân giác của góc BAC
b) Trên AB,AC lần lượt lấy D,E sao cho BD=CE. Chứng minh tam giác ADM = tam giác AEM
c) Gọi I là giao điểm của AM và DE. Chứng minh AM là đường trung trực của đoạn thẳng DE