Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Pham Trong Bach

Cho đoạn thẳng AB, điểm M di chuyển trên đoạn thẳng ấy. Vẽ về một phía của AB các tam giác đều AMD, BME. Trung điểm I của DE di chuyển trên đường nào?

Cao Minh Tâm
8 tháng 2 2017 lúc 18:00

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Gọi C là giao điểm của AD và BE.

Tam giác ABC có:

       ∠ A = 60 0  (vì ΔADM đều)

        ∠ B =  60 0  ( vì ΔBEM đều)

Nên  ∠ C = 180 0  -  ∠ A -  ∠ B =  60 0

Suy ra: ∆ ABC đều hay AB = AC = BC

Suy ra điểm C cố định.

Lại có:  ∠ A =  ∠ (EMB ) =  60 0

ME // AC ( vì có cặp góc đồng vị bằng nhau)

Hay ME // CD.

Do  ∠ DMA =  ∠ BEM =  60 0  ( hai tam giác AMD và BME là tam giác đều )

Suy ra: MD // BC ( vì có cặp góc so le trong bằng nhau ).

hay MD // EC

suy ra tứ giác CDME là hình bình hành.

I là trung điểm của DE nên I là trung điểm của CM

Kẻ CH ⊥ AB,IK ⊥ AB⇒IK // CH

Trong  ∆ CHM,ta có:CI = IM và IK // CH

Suy ra IK là đường trung bình của ΔCHM⇒IK = 1/2 CH

Vì C cố định nên CH không đổi ⇒ IK = 1/2 CH không đổi nên I chuyển động trên đường thẳng song song với AB, cách AB một khoảng bằng 1/2 CH

Khi M trùng với A thì I trùng với trung điểm P của AC.

Khi M trùng với B thì I trùng với trung điểm Q của BC.

Vậy khi M chuyển động trên đoạn thẳng AB thì I chuyển động trên đoạn PQ ( P là trung điểm AC, Q là trung điểm BC).


Các câu hỏi tương tự
Le Ngan
Xem chi tiết
star7a5hb
Xem chi tiết
vuoanh
Xem chi tiết
nguyễn quang minh
Xem chi tiết
nguyễn quang minh
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Loan Trinh
Xem chi tiết
Vũ Thị Trang
Xem chi tiết