Câu 1:Cho tam giác ABC, Gọi M là trung điểm của AB, D là trung điểm của BC, N là điểm thuộc AC sao cho vecto CN bằng 2 vecto NA . khi đó AK bằng=1/4 AB+2/3 AC làm chi tiết ra giúp mình nha
Cho hình bình hành ABCD , gọi M là trung điểm BC, điểm I thỏa \(\overrightarrow{AI}=\dfrac{2}{3}\overrightarrow{AM}\).Chứng minh rằng \(\overrightarrow{BI}=-\dfrac{2}{3}\overrightarrow{AB}+\dfrac{1}{3}\overrightarrow{AC}\)
cho tam giác ABC có trọng tâm là G và M là trung điểm BC. Khẳng định nào sau đây là sai
A. \(\overrightarrow{AG}=\dfrac{2}{3}\overrightarrow{AM}\)
B. \(\overrightarrow{AB}+\overrightarrow{AC}=3\overrightarrow{AG}\)
C. \(\overrightarrow{GA}=\overrightarrow{BG}+\overrightarrow{GC}\)
D.\(\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{GM}\)
giúp mk giải câu C , D thôi cx đc tại cô mk bảo phải cm từng câu cho nên m.n giúp mk vs
Cho tam giác ABC. Trên hai cạnh AB, AC lấy 2 điểm D và E sao cho \(\overrightarrow{AD}=2\overrightarrow{DB}\), \(\overrightarrow{CE}=3\overrightarrow{EA}\). Gọi M là trung điểm DE và I là trung điểm BC. CMR:
a. \(\overrightarrow{AM}=\dfrac{1}{3}\overrightarrow{AB}+\dfrac{1}{8}\overrightarrow{AC}\)
b. \(\overrightarrow{MI}=\dfrac{1}{6}\overrightarrow{AB}+\dfrac{3}{8}\overrightarrow{AC}\)
cho I là trung điểm của đoạn AB,M là điểm bất kì. Chứng minh vector MA +vector MB=2vector MI
cho tam giác ABC, gọi M là điểm trên cạnh BC sao cho\(\overrightarrow{MB}=2\overrightarrow{MC}\) . Chứng minh: \(\overrightarrow{AM}=\dfrac{1}{3}\overrightarrow{AB}+\dfrac{2}{3}\overrightarrow{AC}\)
Cho tam giác ABC. Trên các cạnh AB và BC lấy các điểm E, F sao cho AE = 3/4 AB ; BF = 2/5 BC. Gọi H, I lần lượt là trung điểm AC và EH. Chứng minh ba điểm A, I, F thẳng hàng.
Bài 12. Cho tam giác ABC. M là điểm thuộc cạnh BC sao cho 3BM = 7CM. Biểu diễn vecto AM qua vecto AB và AC .
.
Cho tam giác ABC. Điểm M nằm trên cạnh BC sao cho MB = 2MC. Hãy phân tích vectơ \(\overrightarrow{AM}\) qua 2 vecto \(\overrightarrow{AB,}\overrightarrow{AC}\)