Cho đồ thị hàm số y = f(x). Diện tích hình phẳng (phần có đánh dấu gạch trong hình) là:
A. ∫ - 3 0 f x d x + ∫ 4 0 f x d x
B. ∫ - 3 1 f x d x + ∫ 1 4 f x d x
C. ∫ 0 - 3 f x d x + ∫ 0 4 f x d x
D. ∫ - 3 4 f x d x
Cho đồ thị hàm số y = f ( x ) . Diện tích hình phẳng (phần có đánh dấu gạch trong hình) là:
A. ∫ - 3 0 f x d x + ∫ 4 0 f x d x
B. ∫ - 3 1 f x d x + ∫ 1 4 f x d x
C. ∫ 0 - 3 f x d x + ∫ 0 4 f x d x
D. ∫ - 3 4 f x d x
Cho đồ thị hàm số y = f(x). Diện tích hình phẳng (phần gạch trong hình) là:
Cho đồ thị hàm số y = f(x). Diện tích hình phẳng ( phần gạch sọc ) là:
A. ∫ - 3 4 f x d x
B. ∫ - 3 1 f x d x + ∫ 1 4 f x d x
C. ∫ - 3 0 f x d x + ∫ 0 4 - f x d x
D. ∫ - 3 0 f x d x + ∫ 0 4 f x d x
Cho hàm số y = f(x) liên tục trên Rvà có đồ thị như hình vẽ bên. Hình phẳng được đánh dấu trong hình bên có diện tích là
Cho hàm số y=f(x) có đồ thị hình bên thì công thức tính diện tích hình phẳng phần tô đậm trong hình là:
A. S = ∫ a b f x d x
B. S = ∫ a 0 f x d x + ∫ 0 b f x d x
C. S = ∫ a 0 f x d x − ∫ 0 b f x d x
D. S = ∫ a 0 f x d x − ∫ 0 b f x d x
Cho hàm số y = f(x) có đồ thị hình bên thì công thức tính diện tích hình phẳng phần tô đậm trong hình là:
Cho hàm số y = a x 4 + b x 2 + c có đồ thị (C) biết rằng (C) đi qua điểm A(-1;0) tiếp tuyến d tại A của (C) cắt (C) tại hai điểm có hoành độ lần lượt là 0 và 2, diện tích hình phẳng giới hạn bởi d, đồ thị (C) và hai đường thẳng x=0; x=2 có diện tích bằng 28/5 (phần gạch chéo trong hình vẽ). Diện tích hình phẳng giới hạn bởi d, đồ thị (C) và hai đường thẳng x=-1; x = 0 có diện tích bằng:
A. 2/5
B. 1/9
C. 2/9
D. 1/5
Cho hàm số y = a x 4 + b x 2 + c có đồ thị (C) biết rằng (C) đi qua điểm A(-1;0) tiếp tuyến d tại A của A cắt (C) tại 2 điểm có hoành độ lần lượt là 0 và 2, diện tích hình phẳng giới hạn bởi d, đồ thị (C) và 2 đường thẳng x=0; x=2 có diện tích bằng 28/5 (phần gạch chéo trong hình vẽ).Diện tích hình phẳng giới hạn bởi d, đồ thị (C) và 2 đường thẳng x = 0; x=2 có diện tích bằng
A. 2/5
B. 1/9
C. 2/9
D. 1/5