Cho M là một điểm tùy ý thuộc đường thẳng d cố định nằm ngoài đường tròn (O;R). kẻ 2 tiếp tuyến MP,MQ với đường tròn (O) ( P và Q là các tiếp điểm). kẻ OH vuông góc d (H thuộc d). dây cung PQ cắt OH tại I, cắt OM tại K. CMR:
OI.OH=OK.OM=R^2Khi M thay đổi trên d thì vị trí của điểm I luôn cố địnhCÁC BẠN GIẢI HỘ MK NHÉ CÂU NÀO CX ĐC
Cho một đường thẳng d cố định nằm ngoài đường tròn tâm O bán kính R. Lấy điểm M thuộc d, từ M kẻ tiếp tuyến MP và MQ( P và Q là các tiếp điểm). Kẻ OH vuông góc với d, PQ cắt OM tại K, cắt OH tại I. CMR:
\(\left(a\right)OH.OI=OM.OK \)
b*) Khi M di chuyển trên d thì I luôn luôn cố định.
Cho đường tròn (O; R) và điểm A cố định ngoài đường tròn. Qua A kẻ hai tiếp tuyến AM, AN tói đường tròn (M, N là hai tiếp điểm). Một đường thẳng d đi qua A cắt đường tròn (O; R) tại B và C (AB < AC). Gọi I là trung điểm BC
a, Chứng minh năm điểm A, M, N, O, I thuộc một đường tròn
b, Chứng minh A M 2 = A B . A C
c, Đường thẳng qua B, song song với AM cắt MN tại E. Chúng minh IE song song MC
d, Chứng minh khi d thay đổi quanh quanh điểm A thì trọng tâm G của tam giác MBC luôn nằm trên một đường tròn cố định
Cho 3 điểm A, B, C cố định theo thứ tự trên đường thẳng d.Đường tròn (O,R) thay đổi nhưng luôn đi qua A,B. Từ C vẽ 2 tiếp tuyến CP, CQ với (O,R) (P,Q là 2 tiếp điểm). Gọi I là trung điểm của đoạn AB, M là giao điểm của OC và PQ. Chứng minh khi đường tròn (O,R) thay đổi nhưng vẫn đi qua A,B thì tâm đường tròn ngoại tiếp tam giác IOM luôn thuộc một đường thẳng cố định.
Cho đường tròn (O, R) và một đường thẳng d cố định không cắt (O, R). Hạ OH vuông góc với d (). M là một điểm thay đổi trên d (M không trùng với H). Từ M kẻ hai tiếp tuyến MP và MQ (P, Q là tiếp điểm) với đường tròn (O, R). Dây cung PQ cắt OH ở I, cắt OM ở K.
a) Chứng minh 5 điểm O, Q, H, M, P cùng nằm trên một đường tròn
b) Chứng minh IH . IO = IQ . IP
c) Chứng minh khi M thay đổi trên d thì tích IQ. IP không đổi
d) Giả sử = 60^0, tính tỉ số diện tích hai tam giác MPQ và OPQ
Cho ba điểm A, B, C cố định nằm trên một đường thẳng và theo thứ tự đó. Đường tròn (O) thay đổi luôn đi qua B và C. Từ A kẻ các tiếp tuyến AM và AN với đường tròn (O) (M, N là hai tiếp điểm). Đường thẳng MN cắt AO tại H, gọi E là trung điểm của BC. Chứng minh rằng khi đường tròn (O) thay đổi, tâm của đường tròn ngoại tiếp tam giác OHE nằm trên một đường tròn cố định
Cho đường tròn tâm O bán kính R và đường thẳng d cố định không giao nhau. Hạ OH vuông góc với d. M là một điểm tùy ý trên d (M không trùng với H). Từ M kẻ hai tiếp tuyến MP và MQ với đường tròn (O; R) (P, Q là các tiếp điểm và tia MQ nằm giữa hai tia MH và MO). Dây cung PQ cắt OH và OM lần lượt tại I và K.
A) cm tứ giác OMHQ nội tiếp
B) cm góc OMH = góc OIP
C) cm khi M di chuyển trên đường thẳng d thì điểm I luôn cố định.
D) Biết OH = R√2, tính IP.IQ
cho đường tròn (O),A là điểm cố định nằm ngoài đường tròn (O).Vẽ đường thẳng vuông góc với OA tại A,lấy điểm M tùy ý trên d( M khác A).Vẽ hai tiếp tuyến MB,MC của đường tròn (O) (B ,C là hai tiếp điểm ; M và B khác phía với đường thẳng OA ).a/ Chứng minh tứ giác MBOC nôi tiếp trong đường tròn. b/Hạ BK vuông góc với OA tại K,gọi H là giao điểm của BC và OM.hứng minh KA.HO=KB.HB c/ Chứng minh rằng khi M thay đổi trên d thì đường thẳng BC luôn đi qua một điểm cố định
cho đường tròn (O),A là điểm cố định nằm ngoài đường tròn (O).Vẽ đường thẳng vuông góc với OA tại A,lấy điểm M tùy ý trên d( M khác A).Vẽ hai tiếp tuyến MB,MC của đường tròn (O) (B ,C là hai tiếp điểm ; M và B khác phía với đường thẳng OA ).a/ Chứng minh tứ giác MBOC nôi tiếp trong đường tròn. b/Hạ BK vuông góc với OA tại K,gọi H là giao điểm của BC và OM.hứng minh KA.HO=KB.HB c/ Chứng minh rằng khi M thay đổi trên d thì đường thẳng BC luôn đi qua một điểm cố định