Chọn C.
Với M(a,b,c) thì điểm đối xứng của M qua mặt phẳng (Oxy) là M’ (a;b;-c).
Do đó, điểm đối xứng với điểm M(3;2;-1) qua mặt phẳng (Oxy) là M’(3;2;1).
Chọn C.
Với M(a,b,c) thì điểm đối xứng của M qua mặt phẳng (Oxy) là M’ (a;b;-c).
Do đó, điểm đối xứng với điểm M(3;2;-1) qua mặt phẳng (Oxy) là M’(3;2;1).
Cho điểm M ( 3 ; 2 ; - 1 ) , điểm đối xứng của M qua mặt phẳng (Oxy) là điểm
A. M'(3;-2;1).
B. M'(3;-2;-1).
C. M'(3;2;1).
D. M'(3;2;0).
Cho điểm M ( 3 ; 2 ; - 1 ) , điểm đối xứng của M qua mặt phẳng (Oxy) là điểm
A. N(3;-2;1).
B. N(3;-2;-1).
C. N(3;2;1).
D. N(3;2;0)
Cho M(2;-5;7) Tìm tọa độ điểm đối xứng của M qua mặt phẳng Oxy
A. M'(2;5;7)
B. M'(-2;5;7)
C. M'(-2;5;-7)
D. M'(2;-5;-7)
Trong không gian Oxyz, cho điểm M ( 1 ; 2 ; 3 ) . Tọa độ điểm M’ đối xứng với M qua mặt phẳng (Oxy) là
Trong không gian với hệ tọa độ Oxyz cho điểm M (-1;2;3).
Khi đó điểm M ' đối xứng với M qua mặt phẳng (Oxy) có tọa độ là
A. M ' (1;2;3)
B. M ' (-1;-2;3)
C. M ' (-1;2;-3)
D. M ' (1;-2;3)
Trong không gian Oxyz cho mặt phẳng (α) có phương trình 4x + y + 2z + 1 =0 và mặt phẳng ( β) có phương trình 2x – 2y + z + 3 = 0
Tìm điểm M' là ảnh của M(4; 2; 1) qua phép đối xứng qua mặt phẳng (α).
Cho điểm M(3;2;1). Mặt phẳng (P) đi qua điểm M và cắt các trục tọa độ Ox, Oy, Oz tại ba điểm A, B, C sao cho M là trực tâm tam giác ABC. Phương trình mặt phẳng (P) là:
Cho điểm M ( 1 ; 2 ; - 3 ) , hình chiếu vuông góc của điểm M trên mặt phẳng (Oxy) là:
A. M'(1;2;0)
B. M'(1;0;-3)
C. M'(0;2;-3)
D. M'(1;2;3)
Trong không gian Oxyz, cho hai điểm A(3;2;1), M(3;0;0) và mặt phẳng (P) có phương trình là: x + y + z - 3 = 0. Viết phương trình của đường thẳng d đi qua điểm M, nằm trong mặt phẳng (P) sao cho khoảng cách từ A đến đường thẳng d nhỏ nhất
A. x = -3 - t, y = t, z = 0
B. x = 3 + t, y = 2t, z = 2t
C. x = 3 - t, y = t, z = 0
D. Đáp án khác