Chọn C.
Với M(a;b;c) ⇒ điểm đối xứng của M qua trục Oy là M'(-a;b;-c)
⇒ M'(-3;2;1) ⇒ a + b + c = -3 + 2 + 1 = 0.
Chọn C.
Với M(a;b;c) ⇒ điểm đối xứng của M qua trục Oy là M'(-a;b;-c)
⇒ M'(-3;2;1) ⇒ a + b + c = -3 + 2 + 1 = 0.
Cho điểm M ( 3 ; 2 ; - 1 ) , đ i ể m M ' ( a ; b ; c ) đối xứng của M qua trục Oy, khi đó a + b + c bằng
A. 6
B. 4
C. 0
D. 2
Trong không gian Oxyz, cho các điểm A(a;0;0), B(0;b;0), C(0;0;c) di động trên các trục Ox, Oy, Oz sao cho 2a+b-c-6=0 và hai điểm M(2;-3;5). Xét các mặt cầu (S) ngoại tiếp tứ diện OABC có tâm I. Khi 2 I M → + I N → đạt giá trị nhỏ nhất thì mặt cầu (S) có diện tích bằng
A. 14 π .
B. 64 π .
C. 56 π .
D. 16 π .
CH 1.Trong không gian Oxyz ; Cho 3 điểm: A(-1; 1; 4) , B(1;- 1; 5) và C(1; 0; 3), toạ độ điểm D để ABCD là một hình bình hành là: A. D(-1; 2; 2) C. D(-1;-2 ; 2) D. D(1; -2; -2)
CH 2.Trong không gian Oxyz cho 2 điểm A (1;–2;2) và B (– 2:0;1). Toạ độ điềm C nằm trên trục Oz để A ABC cân tại C là : A. C(0;0;2) C. C(0;–1;0) B. D(1; 2; -2) В. С(0,:0,-2) D. C( ;0;0)
CH 3. Trong không gian Oxyz cho 2 vectơ a =(1; 2; 2) và (1; 2; -2); khi đó : ¿(i+6) có giá trị bằng : С. 4 A. 10 В. 18 D. 8
CH 4.Trong không gian Oxyz cho 2 vecto a= (3; 1; 2) và b= (2; 0; -1); khi đó vectơ 2a-b có độ dài bằng : А. 3/5 В. 29 С. M D. S/5
CH 5. Cho hình bình hành ABCD với A (-1;0;2), B(3;4;0) D (5;2;6). Tìm khẳng định sai. A. Tâm của hình bình hành có tọa độ là (4;3;3) B. Vecto AB có tọa độ là (4;-4;-2) C. Tọa độ của điểm C là (9;6;4) D. Trọng tâm tam giác ABD có tọa độ là (3;2;2)
Trong không gian với hệ trục tọa độ Oxyz cho A (1; 2; ‒1), B (‒2; 1; 0). Điểm M (a; b; c) thuộc mặt phẳng sao cho . Khi đó giá trị của a bằng?
Cho hai số phức α = a + bi, β = c + di. Hãy tìm điều kiện của a, b, c, d để các điểm biểu diễn α và β trên mặt phẳng tọa độ:
a) Đối xứng với nhau qua trục Ox ;
b) Đối xứng với nhau qua trục Oy;
c) Đối xứng với nhau qua đường phân giác của góc phần tư thứ nhất và góc phần tư thứ ba;
d) Đối xứng với nhau qua gốc tọa độ.
Cho điểm M (1; 2; 5), mặt phẳng (P) đi qua điểm M cắt trục tọa độ Ox; Oy; Oz tại A, B, C sao cho M là trực tâm của tam giác ABC. Phương trình mặt phẳng (P) là
Trong không gian với hệ trục Oxyz, cho hai điểm M (1; 2; 1); N (-1; 0; -1). Có bao nhiêu mặt phẳng qua M, N cắt trục Ox, trục Oy lần lượt tại A, B (A ≠ B) sao cho AM = √3BN
A. 1
B. 2
C. 3
D. Vô số.
Cho M(1;2;3). Gọi a, b, c lần lượt là độ dài từ gốc
O đến hình chiếu của lên các trục Ox, Oy, Oz.
Khi đó a + b + c bằng
A. 0
B. 3
C. 6
D. 9
Trong không gian tọa độ Oxyz, cho điểm M (2; 0; 0), N (1; 1; 1). Mặt phẳng (P) thay đổi qua M, N cắt các trục Ox, Oy lần lượt tại B (0; b; 0), C (0; 0; c) (b, c > 0). Hệ thức nào dưới đây là đúng?
A. bc = 2 (b+c)
B. b c = 1 b + 1 c
C. bc = b + c
D. bc = b - c