Cho điểm J thay đổi trên đường chéo BD của hình vuông ABCD và H,K lần lượt là hình chiếu vuông góc của J trên AB,AD
cho hình vuông ABCD ,điểm P thay đổi trên đường chéo BD (P khác B và D ).Gọi Q,R lần lượt là hình chiếu vuông góc của P lên AB và AD .
a.chứng minh 3 đường thẳng BR,DQ,CP đồng quy.
b.xác định vị trí điểm P để diện tích tứ giác AQPR lớn nhất.
1/Cho hình vuông ABCD. M là một điểm tùy ý trên đường chéo BD, vẽ ME thẳng góc AB và MF thẳng góc AD. (E, F thuộc AB và AD)
a/C/m DE = CF.
b/C/m 3 đường thẳng DE, BF và CM đồng qui.
c/Xác định vị trí của M trên BD để diện tích tứ giác AEMF lớn nhất. Tính giá trị lớn nhất đó theo a là độ dài cạnh hình vuông ABCD.
Cho hình vuông ABCD, M là 1 điểm tuỳ ý trên đường chéo BD. Kẻ ME vuông góc với AB, MF vuông góc với AD.
a, CMR: DE = CF
b, CMR: 3 đường thẳng DE, BF, CM đồng quy
c, Xác định vị trí của điểm M đề diện tích tứ giác AEMF lớn nhất
cho hình vuông ABCD, là điểm di chuyển trên đường chéo BD. E,F lần lượt là hình chiếu của M trên AB,AD.
a) chứng minh chu vi tứ giác AEMF không đổi
b) chứng minh MC vuông góc EF
c) xác định điểm M để AE,AF lớn nhất
Cho hình vuông ABCD, M là một điểm tuyfv ý trên đường chéo BD. Kẻ ME vuông góc với AB, MF vuông góc với AD.
a) Chứng minh DE=CF
b) Chứng minh ba đường thẳng DE,BF,CM đồng quy
c) Xác định vị trí của điểm M để diện tích tứ giác AEMF lớn nhất.
Cho hình vuông ABCD. M là một điểm trên đường chéo BD. Kẻ ME và MF vuông góc với AB và AD.
a) Chứng minh hai đoạn thẳng DE và CF bằng nhau và vuông góc với nhau.
b) Chứng minh ba đường thẳng DE, BF và CM đồng quy.
c) Xác định vị trí của điểm M để tứ giác AEMF có diện tích lớn nhất.
Cho hình chữ nhật ABCD có O là giao điểm hai đường chéo AC và BD . Lấy điểm P trên cạnh BD ( P nằm giữa O và D ). Gọi M là điểm đối xứng với C qua P.
a) Chứng minh AMDB là hình thang. Xác định vị trí điểm P trên BD để AMBD là hình thang cân.
b) Kẻ ME vuông góc AD, MF vuông góc AB. Chứng minh rằng EF // AC và E, F, P thẳng hàng.
c) Trên cạnh AB lấy điểm X , trên DC lấy điểm J sao cho AX=CJ, lấy N là điểm tùy ý trên AD. Gọi G là giao điểm của XJ và NB, H là giao điểm của XJ và NC . Tính diện tích của tứ giác AXJD theo diện tích ABCD =S. Chứng minh rằng S AXGN + S NHJD = S GBCH
d) Gọi K là điểm thuộc cạnh AB sao cho góc ADK = 15 độ và AB = 2BC . Chứng minh tam giác CDK cân
Cho hình vuông ABCD, M là 1 điểm nằm trên đường chéo BD. Kẻ ME vuông góc với AB, MF vuông góc với AD.
a) CMR: DE vuông góc với CF; EF=CM.
b) CMR: 3 đườn thẳng DE, BF, CM đồng quy.
c) Xác định vị trí điểm M để tứ giác AEMF có diện tích lớn nhất.