cho tam giác đều abc. từ một điểm M trên cạnh AB vẽ hai đường thẳng song song với ac, bc, cắt bc, ac tại d,e. tìm vị trí điểm m trên cạnh ab để độ dài đoạn de có giá trị nhỏ nhất
1. Cho hình thoi ABCD có số đo góc A bằng 1200. Gọi O là giao điểm của hai đường chéo AC và BD. Trên tia BC lấy điểm M sao cho BM=4/3BC. Đường thẳng AM cắt CD tại N. Trên các đoạn thẳng AB, AD lần lượt lấy các điểm E, F sao cho CE//NF. Tính số đo góc EOF
2. Cho điểm D thay đổi trên cạnh BC của tam giác nhọn ABC (D khác B và C). Từ D kẻ đường thẳng song song với AB cắt cạnh AC tại điểm N. Cũng từ D kẻ đường thẳng song song với AC cắt cạnh AB tại điểm M. Tìm vị trí của D để đoạn thẳng MN có độ dài nhỏ nhất.
3.. ABCD là hình chữ nhật có AB //CD, AB = 2CB. Từ A kẻ đường thẳng vuông góc với đường chéo BD tại H. Trên HB lấy điểm K sao cho HK = HA. Từ K kẻ đường thẳng song song với AH cắt AB tại E. Lấy M trung điểm DE, tia AM cắt DB tại N, cắt DC tại P.
Tính tỷ số diện tích tam giác AND với diện tam giác PMD?
Cho tam giác đều ABC. Từ một điểm M trên cạnh AB vẽ hai đường thẳng song song với hai cạnh AC, BC, chúng lần lượt cắt BC, AC tại D và E. Tìm vị trí của M trên cạnh AB để độ dài đoạn DE đạt giá trị nhỏ nhất.
Cho điểm D thay đổi trên cạnh BC của tam giác nhọn ABC(Dkhác B và C).Từ D kẻ các đường thẳng song song với AB và AC cắt các cạnh AC,ABtại Nvà M.Tìm vị trí của D để đoạn thẳng MN có đồ dại nhỏ nhất
Cho tam giác ABC vuông tại A, gọi D là một điểm nằm giữa B và C. Qua D kẻ đường thẳng song song với AB, cắt AC tại E. Qua D kẻ đường thẳng song song với AC, cắt AB tại F.
a) Chứng minh tứ giác AEDF là hình chữ nhật.
b) Tìm vị trí của điểm D trên cạnh BC để tứ giác AEDF là hình vuông
c) Tìm vị trí của điểm D trên cạnh BC để độ dài đoạn thẳng EF là ngắn nhất.
Bài 1: (4,0 điểm). Cho biểu thức
a) Rút gọn biểu thức P.
b) Tìm x để .
c) Tìm giá trị nguyên của x để P nhận giá trị là số nguyên.
Bài 2: (4,5 điểm).
a) Giải phương trình : .
b) Phân tích đa thức sau thành nhân tử: (x + 2)(2x2 – 5x) - x3 - 8
c) Cho x, y, z là các số khác 0 và đôi một khác nhau thỏa mãn: . Tính giá trị của biểu thức: .
Bài 3: (4,0 điểm).
a) Tìm tất cả các cặp số nguyên (x; y) thỏa mãn: y(x – 1) = x2 + 2
b) Chứng minh rằng nếu các số nguyên a, b, c thỏa mãn b2 – 4ac và b2 + 4ac đồng thời là các số chính phương thì abc 30.
Bài 4: (6,0 điểm).
1) Cho tam giác ABC vuông tại A. Lấy một điểm M bất kỳ trên cạnh AC. Từ C vẽ một đường thẳng vuông góc với tia BM, đường thẳng này cắt tia BM tại D, cắt tia BA tại E, EM cắt BC tại I.
a) Chứng minh EA.EB = ED.EC.
b) Chứng minh .
c) Chứng minh BM.BD + CM.CA = BC2.
d) Vẽ đường thẳng vuông góc với AB tại B, đường thẳng vuông góc với CD tại C, chúng cắt nhau tại K. Chứng minh MK luôn đi qua một điểm cố định khi M thay đổi.
e) Đặt BC = a; EC = b; BE = c; AD = a’; AI = b’; DI = c’.
Chứng minh .
2) Cho điểm D thay đổi trên cạnh BC của tam giác nhọn ABC (D khác B và C). Từ D kẻ đường thẳng song song với AB cắt cạnh AC tại điểm N. Cũng từ D kẻ đường thẳng song song với AC cắt cạnh AB tại điểm M. Tìm vị trí của D để đoạn thẳng MN có độ dài nhỏ nhất
Bài 5: (1,5 điểm). Cho a, b, c > 0 thỏa mãn: a2 + b2 + c2 = 1. Chứng minh rằng
(1)/(1-ab)+(1)/(1-bc)+(1)/(1-ca)<=9/2
cho tam giac abc trên cạnh BC lấy điểm D nằm giữa hai điểm B và C Qua D vẽ đường thẳng song song với AB cắt AC tại E và đường thẳng song song với AC cát AB tại F gọ H là chân đường cao kẻ từ A đến BC O là giao điểm của AD và EF Chứng minh tam giác AOH cân ? điểm D nằm ở đâu trên cạnh BC để độ dài FE là nhỏ nhất
cho tam giác đều ABC, từ 1 điểm M trên cạnh AB vẽ hai đường thẳng song song với hai cạnh AC,BC và lần lượt cắt BC,AC tại D và E. Tìm vị trí M trên AB để DE đạt giá trị nhỏ nhất
Cho tam giác dều ABC .Từ một điểm M trên cạnh AB vẽ hai đường thẳng song song với hai cạnh AC,BC tại D và E .Tìm vị trí của M trên cạnh AB để độ dài doạn DE đạt giá trị nhỏ nhất