ĐÁP ÁN A
Bán kính đường tròn tâm A và tiếp xúc với ∆ là
R = d A , ∆ = 3.7 − 4.4 + 8 3 2 + − 4 2 = 13 5
ĐÁP ÁN A
Bán kính đường tròn tâm A và tiếp xúc với ∆ là
R = d A , ∆ = 3.7 − 4.4 + 8 3 2 + − 4 2 = 13 5
Viết phương trình đường tròn Tâm I tiếp xúc với đường thẳng d: 3x-4y-31=0 tại điểm M(1:7) và bán kính R=5
Cho đường tròn (C) có tâm I(2; 5) và tiếp xúc với đường thẳng ∆: 3x – 4y – 6 = 0. Khi đó (C) có bán kính là:
A.R = 2
B. R = 2 2
C. R = 3
D.R = 4
Bài tập :
B1 Viết phương trình đường tròn (C1) có bán kính R1 = 1 , tiếp xúc với trục Ox và có tâm nằm trên đường thẳng denta : 3x - y +7 = 0
B2 Cho đường tròn (C) : x2 + y2 - 2x - 4y - 4 = 0 và đường thẳng (d) : 3x + 4y +4 = 0 . Chứng minh rằng (d) tiếp xúc với (C)
Cho đường tròn (C) có tâm nằm trên đường thẳng ∆: x + 2y – 5 = 0 và tiếp xúc với hai đường thẳng d 1 : 3 x − y + 5 = 0 v à d 2 : x + 3 y − 13 = 0 . Khi đó bán kính lớn nhất của đường tròn (C) có thể nhận là:
A. 19 2 10
B. 3 10
C. 9 2 10
D. 6 10
Đường tròn (C) có tâm I( -1; 3) và tiếp xúc với đường thẳng d: 3x – 4y + 5= 0 tại điểm H có tọa độ là
A. - 1 5 ; - 7 5
B. 1 5 ; 7 5
C. 1 5 ; - 7 5
D. - 1 5 ; 7 5
Cho đường tròn C có phương trình: x2 + y2 – 4x + 8y – 5 = 0
a, Tìm tọa độ tâm và bán kính của (C)
b, Viết phương trình tiếp tuyến với (C) đi qua điểm A(-1; 0)
c, Viết phương trình tiếp tuyến với (C) vuông góc với đường thẳng: 3x – 4y + 5 = 0.
Lập phương trình đường tròn (C) trong các trường hợp sau:
a, (C) có tâm I(-2; 3) và đi qua M(2; -3);
b, (C) có tâm I(-1; 2) và tiếp xúc với đường thẳng x – 2y +7 =0
c, (C) có đường kính AB với A = (1; 1) và B = (7; 5).
Đường tròn (C) có tâm I( -1; 3) và tiếp xúc với đường thẳng d: 3x-4y + 5= 0 có phương trình là
A. (x+ 1) 2+ (y- 3) 2= 4.
B. (x+ 1) 2+ (y- 3) 2= 10
C. (x+ 1) 2+ (y- 3) 2= 8.
D. (x+ 1) 2+ (y- 3) 2= 16
Cho đường tròn (C): x2+y2-4x+8y-5=0
a) Tìm toạ độ tâm, bán kính của (C)
b) Viết pt tiếp tuyến của (C) đi qua điểm A(-1;0)
c) Viết pt tiếp tuyến của (C) vuông góc với đường thẳng 3x-4y+5=0