a.Ta có DE là đường kính của (O)
\(\Rightarrow EF\perp DF\)
Mà \(DE\perp BC=K\Rightarrow\widehat{EKI}=\widehat{EFD}=90^0\)
=> DFIK nội tiếp
b ) Ta có :
\(AK\perp DE,EF\perp DF\)
\(\Rightarrow\widehat{AFE}=\widehat{AKE}=90^0\)
\(\Rightarrow AFKE\) nội tiếp
Mà IK = HK , \(DE\perp BC=K\) => DE là trung trực của HI
\(\Rightarrow\widehat{DHA}=\widehat{DHK}=\widehat{DIK}=\widehat{DFK}=\widehat{DEA}\)
c ) Ta có : \(\widehat{EIK}=\widehat{DAK}\)do AFKE nội tiếp
\(\widehat{AKD}=\widehat{EKI}=90^0\)
\(\Rightarrow\Delta AKD~\Delta EKI\left(g.g\right)\)
\(\Rightarrow\frac{AK}{EK}=\frac{KD}{KI}\)
\(\Rightarrow KE.KD=KI.AK\)
Lại có : \(\widehat{AFI}=\widehat{AKD}=90^0\Rightarrow\Delta AFI~\Delta AKD\left(g.g\right)\)
\(\Rightarrow\frac{AF}{AK}=\frac{AI}{AD}\Rightarrow AE.AD=AI.AK\)
Mà BCDF nội tiếp
\(\Rightarrow\widehat{AFB}=\widehat{ACD}\Rightarrow\Delta ABF~\Delta ADC\left(g.g\right)\)
\(\Rightarrow\frac{AF}{AC}=\frac{AB}{AD}\Rightarrow AF.AD=AB.AC\)
\(\Rightarrow AB.AC=AI.AK\)
=> KI.AB.AC = AI.AK.KI= AI.KE.KD