cho tam giác đều abc nội tiếp đường tròn tâm o, bán kính R. Từ một điểm M nằm trên cung nhỏ BC của đường tròn (O) kẻ MH, MI, MK lần lượt vuông góc với các đường thẳng AB, BC, CA. Xác định vị trí điểm M sao cho tổng d = MA + MB + MC + MH + MI + MK đạt gtln
Cho đường tròn tâm O, bán kính R. Từ một điểm A nằm ngoài đường tròn, kẻ tiếp tuyến AB, AC. Gọi M là điểm nằm trên cung nhỏ BC
( M không thuộc OA). Từ M kẻ MH, MI, MK lần lượt vuông góc BC, AB,AC tại H, I, K. Chứng minh:
a) BIMH, CHMK nội tiếp
b) MH2 = MI. MK
c) E là giao điểm của BM và HI, F là giao điểm của CM và HK. Chứng minh: HEMF nội tiếp
Cho đường tròn tâm O đường kính BC, A là một điểm thuộc đường tròn. H là hình chiếu của A trên BC. Vẽ đường tròn (I) có đường kính AH, cắt AB và AC theo thứ tự ở M và N.
a) Chứng minh rằng OA vuông góc với MN.
b) Vẽ đường kính AOK của đường tròn (O). Gọi E là trung điểm của HK. Chứng minh rằng E là tâm của đường tròn ngoại tiếp tứ giác BMNC.
c) Cho BC cố định. Xác định vị trí của điểm A để bán kính của đường tròn ngoại tiếp tứ giác BMNC lớn nhất.
1.Cho nửa đường tròn (O) đường kính AB , trên nửa đường tròn lấy điểm D bất kì . Dựng hình bình hành ABCD . Kẻ DM vuông với AC , BN vuông với AC (M,N thuộc AC) . Tìm vị trí của D trên nửa đường tròn (O) sao cho : tích BN x AC lớn nhất
2*.Cho nửa đt (O;R) đường kính AB. M là điểm di động trên nửa đường tròn. Tiếp tuyến tại M cắt 2 tiếp tuyến tại A và B của đường tròn lần lượt tại C và D. AM cắt BD tại I. CMR: OI vuông góc BC
3*.Cho tam giác ABC nội tiếp đường tròn (O;R) , ba đường cao AD , BE , CF của tam giác ABC cắt đường tròn (O) lần lượt tại K, N, M . Tính giá trị của biểu thức : AK/AD + BN/BE + CM/CF
1) Cho đường tròn (O) đường kính AB = 2R. Lấy điểm C di động trên đường tròn (O), gọi I là tâm đường tròn nội tiếp tam giác ABC, vẽ CH vuông góc AB tại H.
a) Vẽ CM song song BI ( M thuôc đường thẳng AI). Trên đoạn thẳng AB lấy điểm F sao cho AC = AF. Tính số đo góc CMF.
b) Gọi K là tâm đường tròn nội tiếp tam giác CHA, CK cắt AB tại E. Tính giá trị lớn nhất của diện tích tam giác CEF theo R khi C di động trên (O).
c) Chứng minh ba đường thẳng MH, CF và BI đồng qui tại một điểm.
2) Cho tam giác nhọn ABC (AB < AC) nội tiếp đường tròn (O;R). Gọi M là điểm di động trên cung nhỏ BC. Vẽ AD vuông góc với MB tại D, AE vuông góc với MC tại E. Gọi H là giao điểm của DE và BC.
a) Chứng minh A, H,E cùng thuộc một đường tròn. Từ đó suy ra DE luôn đi qua một điểm cố định.
b) Xác định vị trí của M để MB/AD×MC/AE đạt giá trị lớn nhất.
Mọi người giúp em với ạ.
Cho nửa đường tròn(o) đường kính AB và điểm M nằm trên nửa đường tròn đó. Kẻ MH vuông góc AB và BH nằm trong nửa đường tròn(o), MA,MB cắt các nửa đường tròn trên lần lượt tai P và Q. Chứng minh rằng a) PQ=MH b)MP.MA=MQ.MB c)PQ là tiếp tuyến chung của hai nửa đường tròn d) tứ giác ABQP nội tiếp đường tròn e) xác định vị trí của M trên nửa đường tròn(o) để tứ giác MPHQ là hình vuông
cho△ABC có ba góc nhọn nội tiếp đường tròn tâm O , bán kính R. Hạ các đường cao AH,BK của tam giác . các tia AH,BK lần lượt cắt (O) tại các điểm thứ hai là D;E.
a)Chứng minh tứ giác AKHB nội tiếp một đường tròn. Xác định tâm của đường tròn đó
b)chứng minh rằng :HK song song với DE
Cho đường tròn (O;R) có 2 đường kính AB và CD vuông góc với nhau. Từ điểm M bất kì trên cung nhỏ BC kẻ MH vuông góc với CB tại H.
1.Gọi I là tâm đường tròn nội tiếp tam giác OMH. Chứng minh \(\widehat{OIB}\) không đổi
2.Tìm vị trí của điểm M sao cho tam giác AMH có diện tích lớn nhất
cho nửa đường tròn đường kính AB, tâm O. từ A,B kẻ hai tiếp tuyến Ax và By( tia Ax, By và nửa đường tròn thuộc cùng một nửa mặt phẳng bờ AB). Qua điểm M thuộc nửa đường tròn này, kẻ tiếp tuyến thứ ba, cắt các tiếp tuyến Ax và By lần lượt ở E và F
a) CM: AEOM là tứ giác nội tiếp
b) AM cắt OE tại P, BM cắt Ò tại Q. Tứ giác MPOQ là hình gì? Vì sao?
c) Kẻ MH vuông góc với AB( H ∈ AB). Gọi K là giao điểm của MH và EB. So sánh MK và HK
d) Cho AB=2R và r là bán kính đường tròn nội tiếp tam giác EOF. CMR: \(\frac{1}{3}< \frac{r}{R}< \frac{1}{2}\)