Cho \(\Delta ABC\) có AB = AC. Kẻ BD vuông góc với AC; CE \(\perp\)AB ( \(D\in AC;E\in AB\)). Gọi O là giao điểm của BD và CE. Chứng minh:
a) BD = CE
b) \(\Delta OEB=\Delta ODC\)
c) AO là tia phân giác của \(\widehat{BAC}\)
cho \(\Delta\)ABC có AB=AC, kẻ BD \(\perp\)AC, kẻ CE\(\perp\)AB(D\(\in\)AC, E\(\in\)AB). Gọi O là giao điểm của BD và CE. Chứng minh:
a)BD=CE
b)\(\Delta\)OEB=\(\Delta\)ODC
c)AO tia phân giác của góc BAC
d)Gọi H là trung điểm của BC.Chứng minh rằng: A,O,C thẳng hàng
Cho \(\Delta ABC\)có AB = AC. Kẻ BD vuoong góc với AC, CE vuông góc với AB ( D\(\in AC,E\in AB\)) . Gọi O là giao điểm của BD và CE. Chứng minh:
a) BD=CE
b) \(\Delta OEB=\Delta ODC\)
c) AO là tia phân giác của \(\widehat{BAC}\)
\(\Delta ABC\)cân tại A, kẻ \(BD\perp AC,CE\perp AB\left(D\in AC,E\in AB\right)\).Gọi I là giao điểm của BD và CE.CM
a) BD=CE
b) AI là tia phân giác của \(\widehat{BAC}\)
Cho tam giác ABC có AB=AC kẻ BD vuông góc AC; CE vuông góc AB (D thuộc AC; E thuộc AB) BD cắt CE ở O. Chứng minh:
a) BD=CE
b) tam giác OEB= tam giác ODC
c) AO là tia phân giác của ^BAC
Bài 5: Cho tam giác ABC có AB=AC, Kẻ BD\(\perp\)AC tại D, Kẻ CE\(\perp\)AB tại E, BD cắt CE tại H
a) Chứng minh: \(\Delta\)ABD = \(\Delta\)ACE
b) Chứng minh: \(\Delta\)BCD = \(\Delta\)CBE
c) Chứng minh: \(\Delta\)BCD = \(\Delta\)CHD
d) Chứng minh: AH là tia phân giác của góc BAC
Cho \(\Delta ABC\)có AB=AC kẻ BD vuông góc với BC (D \(\in\)AC), CE vuông góc với AB (E \(\in\)AB). Gọi O là giao điểm của BD và CE. C/M:
a. BD=CE
b. \(\Delta OBE=\Delta ODC\)
c. AO là tia phân giác của góc BAC
Cho Δ ABC có AB=AC. Kẻ BD vuông góc AC, CE vuông góc AB (D ϵ AC; E ϵ AB). Gọi O là giao điểm của BD và CE. Chứng minh:
a) Δ ABD = Δ ACE
b) BD = CE
c) Δ AOE = Δ AOD
d) Δ OEB = Δ ODC
e) AO là tia phân giác của góc BAC
Cho \(\bigtriangleup\)ABC có AB=AC, kẻ \(BD\perp AC,CE\perp AB\) ( D thuộc AC, E thuộc AB ). Gọi O là giao điểm của BD và CE. Chứng minh
a) BD=CE b) \(\bigtriangleup\)OEB=\(\bigtriangleup\)ODC c) AO là tian phân giác của góc BAC