a, Xét \(\Delta ADE\) có:
\(AD=AE\left(gt\right)\)
\(\Rightarrow\Delta ADE\) cân tại A
\(\Rightarrow\widehat{D}=\widehat{E}=\frac{180^0-\widehat{A}}{2}\) (1)
Xét \(\Delta ABC\) cân tại A có:
\(\widehat{B}=\widehat{C}=\frac{180^0-\widehat{A}}{2}\) (2)
Từ (1) và (2) suy ra \(\widehat{D}=\widehat{B}\) mà hai góc đang ở vị trí đồng vị nên:
\(\Rightarrow DE//BC\)
b, Ta có: \(\left\{{}\begin{matrix}AB=AD+DB\\AC=AE+EC\end{matrix}\right.\)
Mà : \(\left\{{}\begin{matrix}AD=AE\left(gt\right)\\AB=AC\left(\Delta ABCcântạiA\right)\end{matrix}\right.\) \(\Rightarrow DB=EC\)
Xét \(\Delta MBD\) và \(\Delta MEC\) có:
\(DB=EC\left(cmt\right)\)
\(\widehat{B}=\widehat{C}\) ( \(\Delta ABC\) cân tại A)
\(BM=CM\) ( M là trung điểm)
\(\Rightarrow\Delta MBD=\Delta MCE\left(c-g-c\right)\)
c, Ta có: \(\Delta MDB=\Delta MEC\left(cmt\right)\)
\(\Rightarrow DM=EM\) ( 2 cạnh tương ứng)
Xét \(\Delta AMD\) và \(\Delta AME\) có:
\(AD=AE\left(gt\right)\)
\(DM=EM\left(cmt\right)\)
\(AM\) là cạnh chung.
\(\Rightarrow\Delta AMD=\Delta AME\) ( c - c - c)