mình cần mỗi phần d thôi mn ơi, giúp mình bài này với!!!!
mình cần mỗi phần d thôi mn ơi, giúp mình bài này với!!!!
Bài 1: Cho tam giác ABC cân tại A có góc A< 90 độ. Tia Bx vuông góc AB cắt tia AC tại D , tia Cy vuông góc AC cắt tia AB tại E . Gọi giao điểm của hai tia Bx Cy là I . Chứng minh: a) AD =AE BD= CE, b) Tam giác EID cân, góc BAI= góc CAI c) BC // ED và AI vuông góc ED , d) Tìm điều kiện của tam giác ABC sao cho góc IED =30 độ
Cho tam giác ABC cân tại A có góc A<90 độ , tia Bx vuông AB cắt AC tại D , tia CI vuông AC tại E . Gọi giao điểm của 2 tia Bx và CI là E . CMR :
a)AD=AE;BD=CE
b) tam giác EID cân và góc BAI = góc IAC
c) BC song song ED và AI vuông ED
d) tìm điều kiện của tam giác ABC để góc IED=30 độ
Cho tam giác ABC có AB = AC (\(\widehat{A}\) < 90o ) . Tia Bx \(\perp\) AB cắt tia AC tại D, tia Cy \(\perp\) AC cắt tia AB tại E. Gọi giao điểm của hai tia Bx, Cy là I . Chứng minh rằng :
a, \(AD=AE;BD=CE\)
b, \(\Delta BEC=\Delta CDB\)
c, \(AI\) \(\perp\)\(ED\)
Cho tam giác ABC vuông tại A (AB < AC), đường cao AH. Lấy điểm K sao cho H là trung điểm của AK.
a. Chứng minh ΔABK cân và Δ ACK cân.
b. Qua A kẻ tia Ax // BC, qua C kẻ tia Cy // AH. Tia Ax cắt tia Cy tại E.
Chứng minh: AH = CE và AE ⊥ CE.
c. Gọi giao điểm của AC và HE là I; CH và IK là Q; M là trung điểm của KC.
Chứng minh: A; Q; M thẳng hàng.
d. Tìm điều kiện của ΔABC để AB//QK.
Cho tam giác ABC vuông tại A (AB < AC), đường cao AH. Lấy điểm K sao cho H là trung điểm của AK.
a. Chứng minh ΔABK cân và Δ ACK cân.
b. Qua A kẻ tia Ax // BC, qua C kẻ tia Cy // AH. Tia Ax cắt tia Cy tại E.
Chứng minh: AH = CE và AE ⊥ CE.
c. Gọi giao điểm của AC và HE là I; CH và IK là Q; M là trung điểm của KC.
Chứng minh: A; Q; M thẳng hàng.
d. Tìm điều kiện của ΔABC để AB//QK.
cho tam giác ABC cân tại A (AB=AC). Gọi D, E lần lượt là trung điểm của AB và AC
a, Chứng minh: tam giác ABE= tam giác ACD
b, CM: BE=CD
c, Gọi K là giao điểm của BE và CD. CM: tam giác KBC cân tại K
d, CM: AK là tia phân giác của góc BAC
f, Kẻ tia BX vuông góc BA tại B, tia CY vuông góc CA tại C, hai tia BX và CY cắt nhau tại I. CM: A,K,I thẳng hàng
cho tam giác ABC cân tại A (AB=AC). Gọi D, E lần lượt là trung điểm của AB và AC
a, Chứng minh: tam giác ABE= tam giác ACD
b, CM: BE=CD
c, Gọi K là giao điểm của BE và CD. CM: tam giác KBC cân tại K
d, CM: AK là tia phân giác của góc BAC
f, Kẻ tia BX vuông góc BA tại B, tia CY vuông góc CA tại C, hai tia BX và CY cắt nhau tại I. CM: A,K,I thẳng hàng
cho tam giác ABC cân tại A (AB=AC). Gọi D, E lần lượt là trung điểm của AB và AC
a, Chứng minh: tam giác ABE= tam giác ACD
b, CM: BE=CD
c, Gọi K là giao điểm của BE và CD. CM: tam giác KBC cân tại K
d, CM: AK là tia phân giác của góc BAC
f, Kẻ tia BX vuông góc BA tại B, tia CY vuông góc CA tại C, hai tia BX và CY cắt nhau tại I. CM: A,K,I thẳng hàng
Cho tam giác ABC cân tại A, BD vuông góc AC, CE vuông góc AB. Gọi I là giao của BD và CE
a) Chứng minh AI là phân giác của góc BAC
b) Vẽ tia Bx vuông góc AB, Cy vuông góc AC; Bx cắt Cy tại H. Chứng minh CH = HB và AH là trung trực của BC