Cho dãy số u ( n ) xác định bởi u ( 1 ) = 1 ; u ( m + n ) = u ( m ) + u ( n ) + m n , ∀ m , n ∈ ℕ * . Tính u ( 2017 )
A. 2035153
B. 2035154
C. 2035155
D. 2035156
Cho dãy số xác định bởi u1=1 , u n+1 = \(2un+\frac{n-1}{n^2+3n+2}\). khi đó u 2018 bằng
Cho dãy số (Un) xác định bởi U1=-3 và U(n+1)=Un+ n^2 -3n +4, mọi n thuộc N*. Số 1391 là số hạng thứ mấy của dãy ?
Cho dãy số được xác định bởi: U1=12
\(\frac{2\cdot U_{n+1}}{n^2+5n+6}=\frac{U_n+n^2-n-2}{n^2+n}\)
Tìm số hạng tổng quát của dãy số
Cho dãy số ( u n ) xác định bởi u 1 = 5 u n + 1 = u n + 3 n - 2 v ớ i n ≥ 1
Tìm công thức tính ( u n ) theo n
Cho dãy số u(n)=\(1/(2*4) +1/(5*7)+...+1/((3n-1)*(3n+1))\)
Tính Lim u(n).
Cho dãy số ( u n ) xác định bởi :
u 1 = 1 u n + 1 = u n + n 2 , n ≥ 1
Công thức của u n + 1 theo n là:
A. 1 + n n + 1 2 n + 1 6
B. n n + 1 2 n + 1 6
C. n 2 n + 1 2 4
D. 1 + n 2 n + 1 2 4